Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre -including this research content -immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Distraction osteogenesis (DO) is an emerging method for bone tissue reconstruction. In oral and maxillofacial reconstruction applications, DO is playing an important role as a technique without the need of bone graft. In addition, in a DO treatment procedure, a superior outcome could be achieved compared to conventional reconstruction techniques. Recently, a few automatic continuous distraction osteogenesis (ACDO) devices have been designed and developed to be used in human reconstruction applications. Experiments and animal studies have validated the functionality of the developed ACDO devices. It has shown that by using such ACDO devices in a DO procedure, compared to conventional manual DO methods, superior outcomes could be obtained. However, the application of such ACDO devices is still limited. More research and investigation need to be undertaken to study all requirements of ACDO devices to be used in successful human mandibular DO treatment. It is important to determine all requirements and standards that need to be considered and applied in the design and development of ACDO devices. The purpose of this review paper is to highlight the designed and developed ACDO procedures thus far in terms of their working principles, working parameters, and technical aspects for providing a better perspective of the development progress of ACDO devices for oral and maxillofacial reconstruction applications. In this paper, design principles, device specifications, and working parameters of ACDO devices are compared and discussed. Subsequently, current limitations and gaps have been addressed, and future works for enabling an ultimate automatic DO procedure have been suggested.
Background
Distraction osteogenesis (DO) is a novel technique widely used in human body reconstruction. DO has got a significant role in maxillofacial reconstruction applications (MRA); through this method, bone defects and skeletal deformities in various cranio-maxillofacial areas could be reconstructed with superior results in comparison to conventional methods. Recent studies revealed in a DO solution, using an automatic continuous distractor could significantly improve the results while decreasing the existing issues. This study is aimed at designing and developing a novel automatic continuous distraction osteogenesis (ACDO) device to be used in the MRA.
Methods
The design is comprised of a lead screw translation mechanism and a stepper motor, placed outside of the mouth to generate the desired continuous linear force. This externally generated and controlled distraction force (DF) is transferred into the moving bone segment via a flexible miniature transition system. The system is also equipped with an extra-oral ACDO controller, to generate an accurate, reliable, and stable continuous DF.
Results
Simulation and experimental results have justified the controller outputs and the desired accuracy of the device. Experiments have been conducted on a sheep jaw bone and results have showed that the developed device could offer a continuous DF of 38 N with distraction accuracy of 7.6 nm on the bone segment, while reducing the distraction time span.
Conclusion
Continuous DF with high resolution positioning control, along with the smaller size of the distractor placed in the oral cavity will help in improving the result of the reconstruction operation and leading to a successful DO procedure in a shorter time period. The developed ACDO device has less than 1% positioning error while generating sufficient DF. These features make this device a suitable distractor for an enhanced DO treatment in MRA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.