Introduction: The purpose of this study is to investigate the effect of a low-power laser on the proliferation, migration, differentiation of different types of mesenchymal stem cells (MSCs) in different studies. Methods: The relevant articles that were published from 2004 to 2019 were collected from the sources of PubMed, Scopus, and only the articles specifically examining the effect of a lowpower laser on the proliferation, differentiation, and migration of the MSCs were investigated. Results: After reviewing the literature, only 42 articles were found relevant. Generally, most of the studies demonstrated that different laser parameters increased the proliferation, migration, and differentiation of the MSCs, except the results of two studies which were contradictory. In fact, changing the parameters of a low-power laser would affect the results. On the other hand, the source of the stem cells was reported as a key factor. In addition, the combination of lasers with other therapeutic approaches was found to be more effective. Conclusion: The different parameters of lasers has been found to be effective in the proliferation, differentiation, and migration of the MSCs and in general, a low-power laser has a positive effect on the MSCs, helping to improve different disease models.
Introduction: Damage to the spinal cord is a central nervous system disorder that results in direct damage to neural cells (axons, cell bodies) and glia, followed by autonomic, motor and sensory impairments. Inflammatory response after this injury can contribute to secondary tissue damage that leads to further behavioral and functional disorders. Inflammation is a complex process, which occurs after an injury. If this progressive process is not well controlled can lead to additional damage to the spinal cord which is preventing neural improvement and regeneration and, which ultimately will not provide good clinical consequences. Inflammation in the injured spinal cord is a physiological response that causes the death of glial and neuronal cells. The reduction of the initial inflammatory process after damage to the spinal cord is one of the important therapeutic strategies. It has been proposed that low-level laser (LLL) therapy, as a noninvasive manner, can modulate inflammatory processes, which leads to a significant improvement in neurological symptoms after spinal cord injury (SCI). Methods: A comprehensive review was performed on SCI, the etiologies, and treatment methods using the keywords spinal cord injury, low-level laser, and inflammation in valid medical databases such as Google Scholar, PubMed, and Elsevier (76 articles). Among the collected papers, articles that were most relevant to the purposes of the study were selected and studied. Results: LLL therapy was able to reduce inflammation and also attenuate neuronal damage after spinal cord damage.
Conclusion:The present study illustrates that LLL therapy has positive effects on improving functional recovery and regulating the inflammatory function in the SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.