Redox-active stimuli have gained a great deal of interest as an indicating factor for designing bioresponsive matrices in gene delivery. Hence, a wide range of gene carriers has been designed incorporating the redox-stimuli characteristics. The most important type of gene carriers is the class of redox responsive polymers. Among them, disulfide incorporated redox-responsive polyethyleneimine (PEI) and its derivatives, as a result of their outstanding DNA entrapping characteristics and their intrinsic endosomolytic activity, have attracted considerable attention in recent studies. The review presents the main developments of the characteristics of PEI derivatives and their applications in gene delivery. It is found that despite the uniquely stated characteristics, the noncleavable structure of conventional PEI (high molecular weight PEI: 25k), which makes it a nondegradable material, as well as the frequent inclusion of positively charged amino groups, which reduces its blood circulation period, render conventional PEI a very toxic material for gene-delivery applications. The extremely high cellular toxicity of conventional PEI has restricted its administration for real in-vivo physiological media. Recent studies have shown that employing low molecular weight PEI cross-linked by disulfide linkages (SS-PEI) and assembling low molecular weight disulfide linkages PEI (LMW SS-PEI) with bio-detachable anionic groups were two successful approaches for increasing bioavailability of the PEI-based gene carriers, while keeping outstanding cellular transfection.
Although several anticancer drugs have been introduced as chemotherapeutic agents, the effective treatment of cancer remains a challenge. Major limitations in the application of anticancer drugs include their nonspecificity, wide biodistribution, short half-life, low concentration in tumor tissue and systemic toxicity. Drug delivery to the tumor site has become feasible in recent years, and recent advances in the development of new drug delivery systems for controlled drug release in tumor tissues with reduced side effects show great promise. In this field, the use of biodegradable polymers as drug carriers has attracted the most attention. However, drug release is still difficult to control even when a polymeric drug carrier is used. The design of pharmaceutical polymers that respond to external stimuli (known as stimuli-responsive polymers) such as temperature, pH, electric or magnetic field, enzymes, ultrasound waves, etc. appears to be a successful approach. In these systems, drug release is triggered by different stimuli. The purpose of this review is to summarize different types of polymeric drug carriers and stimuli, in addition to the combination use of stimuli in order to achieve a better controlled drug release, and it discusses their potential strengths and applications. A survey of the recent literature on various stimuli-responsive drug delivery systems is also provided and perspectives on possible future developments in controlled drug release at tumor site have been discussed.
A microfluidics approach to synthesize core-shell nanocarriers with high pH tunability is described. The sacrificial shell protects the core layer with the drugs and prevents their release in the severe pH conditions of the gastrointestinal tract, while allowing for drug release in the proximity of a tumor. The proposed nanoparticulate drug-delivery system is designed for the oral administration of cancer therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.