Flexible pressure sensors offer a wide application range in health monitoring and human-machine interaction. However, their implementation in functional textiles and wearable electronics is limited because existing devices are usually small, 0D elements, and pressure localization is only achieved through arrays of numerous sensors. Fiber-based solutions are easier to integrate and electrically address, yet still suffer from limited performance and functionality. An asymmetric cross-sectional design of compressible multimaterial fibers is demonstrated for the detection, quantification, and localization of kPa-scale pressures over m 2 -size surfaces. The scalable thermal drawing technique is employed to coprocess polymer composite electrodes within a soft thermoplastic elastomer support into long fibers with customizable architectures. Thanks to advanced mechanical analysis, the fiber microstructure can be tailored to respond in a predictable and reversible fashion to different pressure ranges and locations. The functionalization of large, flexible surfaces with the 1D sensors is demonstrated by measuring pressures on a gymnastic mat for the monitoring of body position, posture, and motion.
Biodegradable polymers are increasingly employed at the heart of therapeutic devices. Particularly in the form of thin and elongated fibers, they offer an effective strategy for controlled release in a variety of biomedical configurations such as sutures, scaffolds, wound dressings, surgical or imaging probes, and smart textiles. So far however, the fabrication of fiber-based drug delivery systems has been unable to fulfill significant requirements of medicated fibers such as multifunctionality, adequate mechanical strength, drug loading capability, and complex release profiles of multiple substances. Here, a novel paradigm in the design and fabrication of microstructured biodegradable fibers with tailored mechanical properties and capable of predefined release patterns from multiple reservoirs is proposed. Different biodegradable polymers compatible with the scalable thermal drawing process are identified, and their release properties as thin films of various thicknesses in the fiber form are experimentally investigated and modeled. Multimaterial microstructured fibers with predictable complex release profiles of potentially different substances are then designed and fabricated. Moreover, the tunability of the mechanical properties via tailoring the drawing process parameters is demonstrated, as well as the ability to weave such fibers. This work establishes a novel platform for biodegradable microstructured fibers for applications in implants, sutures, wound dressing, or tissue scaffolds.
Multimaterial thermally drawn fibers are becoming important building blocks in several foreseen applications in surgical probes, protective gears, or medical textiles. Here, the influence of the thermal drawing parameters on the degree of polymer chain orientation, the related thermal shrinkage behavior, and the mechanical properties of the final fibers is investigated via thermo–mechanical testing and small‐ and wide‐angle X‐ray scattering (SAXS and WAXS) analyses. This study on polyetherimide fibers reveals that the drawing stress, which depends on the drawing speed and temperature, controls the thermal shrinkage behavior and mechanical properties. Furthermore, SAXS and WAXS analyses show that the degree of chain orientation increases with drawing stresses below 8 MPa and then saturates, which correlates with the amount of observed shrinkage. The use of this process‐dependent polymer chain alignment to tune the mechanical and shrinkage properties of the fibers is highlighted and controlled bending multimaterial fibers made of two polymethyl methacrylates having different molecular weights are developed. Finally, a heat treatment procedure is proposed to relax the chain alignment and increase the dimensional stability of devices such as temperature sensors. This deeper understanding can serve as a guide for the processing of complex fibers requiring specific mechanical properties or enhanced thermal stability.
A robust power device for wearable technologies and soft electronics must feature good encapsulation, high deformability, and reliable electrical outputs. Despite substantial progress in materials and architectures for two-dimensional (2D) planar power configurations, fiber-based systems remain limited to relatively simple configurations and low performance due to challenges in processing methods. Here, we extend complex 2D triboelectric nanogenerator configurations to 3D fiber formats based on scalable thermal processing of water-resistant thermoplastic elastomers and composites. We perform mechanical analysis using finite element modeling to understand the fiber’s deformation and the level of control and engineering on its mechanical behavior and thus to guide its dimensional designs for enhanced electrical performance. With microtexture patterned functional surfaces, the resulting fibers can reliably produce state-of-the-art electrical outputs from various mechanical deformations, even under harsh conditions. These mechanical and electrical attributes allow their integration with large and stretchable surfaces for electricity generation of hundreds of microamperes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.