This study's aim was to investigate iron (Fe) and zinc (Zn) concentration in the soil, forage crops, and sheep blood with respect to the seasonal availability of these metals. Soil, forage, and sheep blood samples were sampled from five different locations in Chakwal (Pidh, Tobar, Ratoccha, Choa Saiden Shah-Kalar Kahar road, and Choa Saiden Shan-Chakwal Road) during two seasons, i.e., winter and summer. All the samples were processed through wet acid digestion for evaluation of metal contents. Because of proximity of site-1 and site-2 to coal mines, higher Fe concentration was observed than Zn. Overall, varied Fe concentrations obtained in soil were 12.95-24.31 mg/kg, 1.29-9.61 mg/kg in forage and 1.17-24 mg/l in blood, whereas Zn values were 1.04-31.9 mg/kg, 1.96-7.02 mg/kg, and 0.16-6.52 mg/l for soil, forages, and blood respectively. The pollution load index value for both Fe (0.01-0.14 mg/kg) and Zn (0.02-0.72 mg/kg) was lesser than 1. Bio-concentration (0.09-2.64mg/kg) and enrichment factor (0.08-7.51 mg/kg) were showing efficient transfer of metals through the food chain. Daily intake and health risk index values of iron were ranged from 0.01 to 1.1 mg/kg/day and 0.02 to 1.05 mg/kg/day. There was a probable chance of upsurge in metal values in coming years due to continued mining activities. Anthropogenic input, mainly mining activities in the study area, have increased the Fe and Zn content in the environment which can ultimately find their way up the food chain, thereby risking the health of grazing livestock.
Irrigation using sewage water can be beneficial, as it can increase the productivity of crops but has negative consequences on crops, soil contamination, and human health. It contains a variety of toxins, such as chemicals and heavy metals, which damage the soil and crops. In this regard, the aim of the research was to assess the potential health hazards of iron (Fe) metal in food crops (leafy and root crops) treated with wastewater (T_1), canal water (T_2), and tube well water (T_3). Water, soil, and edible components of food crops were collected at random from three distinct locations. Fe concentration in samples was estimated using atomic absorption spectrophotometer, following wet digestion method. The Fe concentrations, ranged from 0.408 to 1.03 mg/l in water, 31.55 to 187.47 mgkg-1 in soil and 4.09 to 32.583 mgkg-1 in crop samples; which were within permissible limits of the World Health Organization (WHO). There was a positive correlation between soils and crops. The bioconcentration factor, enrichment factor (EF), daily intake of metals (DIM), health risk index (HRI), and target hazard quotient (THQ) all values were <1, except for a pollution load index >1, which indicated soil contamination, but there was no Fe toxicity in crops, no health risk, and no-carcinogenic risk for these food crops in humans. To prevent the excessive accumulation of Fe metal in the food chain, regular monitoring is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.