Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the world, affecting an estimated 50 million individuals. The nerve cells become impaired and die due to the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs). Dementia is one of the most common symptoms seen in people with AD. Genes, lifestyle, mitochondrial dysfunction, oxidative stress, obesity, infections, and head injuries are some of the factors that can contribute to the development and progression of AD. There are just a few FDA-approved treatments without side effects in the market, and their efficacy is restricted due to their narrow target in the etiology of AD. Therefore, our aim is to identify a safe and potent treatment for Alzheimer’s disease. We chose the ursolic acid (UA) and its similar compounds as a compounds’ library. And the ChEMBL database was adopted to obtain the active and inactive chemicals against Keap1. The best Quantitative structure-activity relationship (QSAR) model was created by evaluating standard machine learning techniques, and the best model has the lowest RMSE and greatest R2 (Random Forest Regressor). We chose pIC50 of 6.5 as threshold, where the top five potent medicines (DB06841, DB04310, DB11784, DB12730, and DB12677) with the highest predicted pIC50 (7.091184, 6.900866, 6.800155, 6.768965, and 6.756439) based on QSAR analysis. Furthermore, the top five medicines utilize as ligand molecules were docked in Keap1’s binding region. The structural stability of the nominated medications was then evaluated using molecular dynamics simulations, RMSD, RMSF, Rg, and hydrogen bonding. All models are stable at 20 ns during simulation, with no major fluctuations observed. Finally, the top five medications are shown as prospective inhibitors of Keap1 and are the most promising to battle AD.
Objective: Diabetes mellitus is a serious, complex metabolic disorder and growing health threat disease in the world. Berberine, one of the main constituent in Rhizoma coptidis is widely used in the treatment of diabetes. Potential of berberine in the management of diabetic complications, namely diabetic nephropathy and cardiomyopathy, is however, not yet explored. The present study was, therefore, undertaken to explore the potential of berberine for the management of diabetic nephropathy and diabetic cardiomyopathy in high-fat diet (HFD) and low dose streptozotocin (STZ) induced diabetes in rats. Methods: Rats were fed a high-fat diet for 4 w followed by a single intraperitoneal dose of streptozotocin (35 mg/kg). Animals were divided in five groups. Berberine was given orally in two different dose levels (75 mg/kg and 150 mg/kg) for 28 d. Metformin (100 mg/kg) was used as a standard antidiabetic drug. At the end of the study, parameters evaluated includes glycemic profile, lipid profile, left ventricular indices, urinary protein, serum creatinine, blood urea nitrogen and cardiac antioxidants. Histopathology of kidney and pancreas was carried out. Results: Berberine treated groups showed a significant decrease in fasting blood glucose, glycosylated Hb, creatinine, blood urea nitrogen and urinary total proteins, whereas there was a significant improvement in serum insulin, liver glycogen, skeletal muscle glycogen and cardiac antioxidant enzymes. Conclusion: Present study indicated that berberine shows a protective role in diabetes-associated renal and cardiovascular complications.
Background: One of the leading global metabolic diseases marked by insulin resistance and chronic hyperglycemia is type 2 diabetes mellitus (T2DM). Since the last decade, DPP-4 enzyme inhibition has proved to be a successful, safe, and well-established therapy for the treatment of T2DM. Objective: The present work reports the synthesis, characterization, and screening of some novel 2-methyl-N'-[(Z)-substituted-phenyl ethylidene] imidazo [1, 2-a] pyridine-3-carbohydrazide derivatives as DPP-IV inhibitors for the treatment of T2DM. Methods: The molecular docking was performed to study these derivatives' binding mode in the enzyme's allosteric site. All the synthesized compounds were subjected for DPP-IV enzyme assay and in vivo antihyperglycemic activity in STZ-induced diabetic rats. Results: The synthesized derivatives exhibited potent antidiabetic activity as compared to the standard drug Sitagliptin. Out of sixteen compounds, A1, A4, B4, C2, C3, and D4 have shown promising antidiabetic activity against the DPP-IV enzyme. The most promising compound, C2, showed a percentage inhibition of 72.02±0.27 at 50 µM concentration. On the 21st-day compound, C2 showed a significant reduction in serum blood glucose level, i.e., 156.16±4.87 mg/dL, then diabetic control, which was 280.00±13.29 mg/dL whereas, standard Sitagliptin showed 133.50±11.80 mg/dL. In the in vivo antihyperglycemic activity, the compounds have exhibited good hypoglycemic potential in fasting blood glucose in the T2DM animal model. All the docked molecules have exhibited perfect binding affinity towards the active pocket of the enzyme. The synthesized derivatives were screened through Lipinski's rule of five for better optimization, and fortunately, none of them had violated the rule. Conclusion: The above results indicates that compound C2 is a relatively active and selective hit molecule that can be structurally modified to enhance the DPP-IV inhibitor's potency and overall pharmacological profile. From the present work, it has been concluded that substituted pyridine-3-carbohydrazide derivatives possess excellent DPP-IV inhibitory potential and can be better optimized further by generating more in vivo, in vitro models.
Abstract:: Hybridization is an important strategy to design molecules that can be effectively used to treat fatal diseases known to mankind. Molecular hybrids and their pharmacological investigations aided to discover several potent isatin (Indole 2, 3 dione) derivatives with anti-HIV, antimalarial, antitubercular, antibacterial, and anticancer activities. Indole‐2,3‐dione and their derivatives have diverse pharmacological properties and have a prominent role in the discovery of new drugs. To understand the various approaches in designing new molecules based on isatin nucleus analysis of various pharmacophore hybrids, spacers/linkers between pharmacophores and isatin for hybridization and their biological activities is important. This review discusses the progress in developing isatin hybrids as biologically effective agents, and their crucial aspects of design and structure-activity relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.