Sand samples with furan binder were prepared using Sand, Furfuryl Alcohol and Toluene Sulfonic Acid with ratio 100:0.85:0.30. To identify and quantify gases releasing from furan binder various studies like FTIR, TGA and GC-MS were carried out. After analyzing our materials using above mentioned characterizations the chemical formula of the Resin and Binder and amount of gases releasing from composition were confirmed. After studying various reports on pyrolysis process of furan binder calculation of the % of various gases emitting during pyrolysis process of furan was carried out. Sample of gas collected from mold was analyzed using GC-MS. Based on GC-MS measurement various gases emitting from furan sand mold were identified and their amount were calculate and compared with the international standers of permissible gas emission limits in a foundry. The purpose of this paper is to assist foundries in pollution prevention by devising clean technologies which maintain or improve the quality of ambient surrounding. This paper aimed at minimization of pollution of air by using various techniques.
Traditional cast metal markets have been confronting incessant competition from overseas producers as their lower wage scales and environmental standards reduce their product cost. Many foundries have made changes in their processes reducing air and water emissions. One foundry, Krislur Castomech Pvt. Ltd., Bhavnagar, Gujarat, India, has adopted a newer furan no-bake binder system over a singlepart binder system that offers an advantage in terms of strength and environmental concerns by reuse of the sand, which is discussed herein. In this work, grain fineness number and compressive tests are performed and the effect of temperature and resin is measured using the analysis of variance method. Sand topology and defect photographs were taken using a scanning electron microscope to identify sand size and shape. Investigation of the exact defect was performed using energy dispersive spectroscopy. In this work, progress was made in reducing casting defects and improving casting quality.
Casting covers major area of production all over the world. Resin bonded casting is widely used in today's manufacturing industries. Furan No bake casting is most widely accepted in indian foundries due to its excellent surface finish and dimensional stability. It is a self-setting binder and it has a lower work and strip times. Though the casting process is also known as process of uncertainty, in the present study, an attempt has been made to investigate the effect of Grain Fineness Number, Loss of Ignition, Potential of Hydrogen, % of Resin with respect to sand, Sand Temperature and Compressive strength of the mould on Sand Inclusion defect -one of the most dominating defect in the Krislur Castomech Pvt. Ltd. Industry situated at Bhavnagar, Gujarat, India. The experiments were conducted based on response surface methodology (RSM) and sequential approach using face centered central composite design. The results show that quadratic model with removal of some insignificant term is comparatively best fits for Sand Inclusion Defect.
The foundries are facing problem-related to the selection of the parameter’s value for minimum rejection and maximum productivity. The furan no-bake binders system guaranteed dimensional stability and a comparative good surface finish of the casting. Based on past data in the industry, it is found that gas porosity defect is one of the highest. The phenomenon of the formation of the bubble in the fissures of the mould-metal interface, and later on trapping during the solidification leads to gas porosity. The current research work is focused on the minimization of the defect by the selection of the optimum range of input variables. Based on rigorous literature survey and industrial expert’s opinion, it is found that the parameters like grain fineness number (GFN) of the sand, loss on ignition (LoI) of the used sand, the sand temperature at the mixing time, potential of hydrogen (pH) are important parameters for gas porosity defect in the casting.Design-Expert software and particularly response surface methodology (RSM) and sequential approach using the face-centered central composite design is used for the experiments. The results show that a quadratic model with the removal of some insignificant term is a comparatively best fit for gas porosity defects. After analysis, various favorable levels of different parameters are obtained. The research work is based on realistic problems of the foundries and based on the experimental work. Thus, the provided solution is very much useful for foundries to reduce the rejection, particularly for furan no-bake with furfuryl alcohol as resin and sulphonic acid as catalyst. The research problem addressed in the paper is a genuine problem of the foundries and the sole work is based on experimental evidence.
Solidification of metals stands as marvel of ultimate significance for metallurgists, casting engineers and physicist which hampers the quality of castings, material yield and cycle time. Method of solidifying in casting is intricate in natural surroundings hence the process replication is mandatory in business before it is actually enforced. Volumetric contraction allied with solidifying of liquefied metal causes defects viz: shrinkage porosity, sink and cavity. Casting defects are decreased through casting simulation software and an intellectual feeding technique. Generally, gating system controls the velocity of molten metal that affects turbulence and flowability of casting. In this research, a challenge is taken to remodel a gating system by design of experiments (DoE) and casting solidification simulation framework ('e-foundry'-a web resource with casting simulation facility) and validation of results based on experiments performed in Krislur Castomech Pvt. Ltd, Bhavnagar, Gujarat, India for minimum shrinkage porosity defect in casting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.