Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health.
Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
We report a high-quality draft of the genome sequence of the grey, short-tailed opossum (Monodelphis domestica). As the first metatherian ('marsupial') species to be sequenced, the opossum provides a unique perspective on the organization and evolution of mammalian genomes. Distinctive features of the opossum chromosomes provide support for recent theories about genome evolution and function, including a strong influence of biased gene conversion on nucleotide sequence composition, and a relationship between chromosomal characteristics and X chromosome inactivation. Comparison of opossum and eutherian genomes also reveals a sharp difference in evolutionary innovation between protein-coding and non-coding functional elements. True innovation in protein-coding genes seems to be relatively rare, with lineage-specific differences being largely due to diversification and rapid turnover in gene families involved in environmental interactions. In contrast, about 20% of eutherian conserved non-coding elements (CNEs) are recent inventions that postdate the divergence of Eutheria and Metatheria. A substantial proportion of these eutherian-specific CNEs arose from sequence inserted by transposable elements, pointing to transposons as a major creative force in the evolution of mammalian gene regulation.
Annigeri 1 and JG 74 are elite high yielding desi cultivars of chickpea with medium maturity duration and extensively cultivated in Karnataka and Madhya Pradesh, respectively. Both cultivars, in recent years, have become susceptible to race 4 of Fusarium wilt (FW). To improve Annigeri 1 and JG 74, we introgressed a genomic region conferring resistance against FW race 4 (foc4) through marker-assisted backcrossing using WR 315 as the donor parent. For foreground selection, TA59, TA96, TR19 and TA27 markers were used at Agricultural Research Station, Kalaburagi, while GA16 and TA96 markers were used at Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur. Background selection using simple sequence repreats (SSRs) for the cross Annigeri 1 × WR 315 in BC1F1 and BC2F1 lines resulted in 76–87% and 90–95% recurrent parent genome recovery, respectively. On the other hand, 90–97% genome was recovered in BC3F1 lines in the case of cross JG 74 × WR 315. Multilocation evaluation of 10 BC2F5 lines derived from Annigeri 1 provided one superior line referred to as Super Annigeri 1 with 8% increase in yield and enhanced disease resistance over Annigeri 1. JG 74315-14, the superior line in JG 74 background, had a yield advantage of 53.5% and 25.6% over the location trial means in Pantnagar and Durgapura locations, respectively, under Initial Varietal Trial of All India Coordinated Research Project on Chickpea. These lines with enhanced resistance and high yield performance are demonstration of successful deployment of molecular breeding to develop superior lines for FW resistance in chickpea.Electronic supplementary materialThe online version of this article (10.1007/s11032-018-0908-9) contains supplementary material, which is available to authorized users.
Highlights Antimicrobial resistance is global risk to both humans & environment health. Aquatic system serves as hotspot for dissemination of AMR. Metagenomics can be used for monitoring abundance of ARGs in environment. Application of metagenomics has potential to yield novel secondary metabolites having antimicrobial potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.