Reactive oxygen species (ROS) have been implicated as mediators of tumor necrosis factor-alpha (TNF) -induced apoptosis. In addition to leading to cell death, ROS can also promote cell growth and/or survival. We investigated these two roles of ROS in TNF-induced endothelial cell apoptosis. Human umbilical vein endothelial cells (HUVECs) stimulated with TNF produced an intracellular burst of ROS. Adenoviral-mediated gene transfer of a dominant negative form of the small GTPase Rac1 (Rac1N17) partially suppressed the TNF-induced oxidative burst without affecting TNF-induced mitochondrial ROS production. HUVECs were protected from TNF-induced apoptosis. Expression of Rac1N17 blocked TNF-induced activation of nuclear factor-kappa B (NF-kappaB), increased activity of caspase-3, and markedly augmented endothelial cell susceptibility to TNF-induced apoptosis. Direct inhibition of NF-kappaB through adenoviral expression of the super repressor form of inhibitor of kappaBalpha (I-kappaB S32/36A) also increased susceptibility of HUVECs to TNF-induced apoptosis. Rotenone, a mitochondrial electron transport chain inhibitor, suppressed TNF-induced mitochondrial ROS production, proteolytic cleavage of procaspase-3, and apoptosis. These findings show that Rac1 is an important regulator of TNF-induced ROS production in endothelial cells. Moreover, they suggest that Rac1-dependent ROS, directly or indirectly, lead to protection against TNF-induced death, whereas mitochondrial-derived ROS promote TNF-induced apoptosis.
Reperfusion of ischemic tissue results in the generation of reactive oxygen species that contribute to tissue injury. The sources of reactive oxygen species in reperfused tissue are not fully characterized. We hypothesized that the small GTPase Rac1 mediates the oxidative burst in reperfused tissue and thereby contributes to reperfusion injury. In an in vivo model of mouse hepatic ischemia/reperfusion injury, recombinant adenoviral expression of a dominant negative Rac1 (Rac1N17) completely suppressed the ischemia/reperfusion-induced production of reactive oxygen species and lipid peroxides, activation of nuclear factor-kappa B, and resulted in a significant reduction of acute liver necrosis. Expression of Rac1N17 also suppressed ischemia/reperfusion-induced acute apoptosis. The protection offered by Rac1N17 was also evident in knockout mice deficient for the gp91phox component of the phagocyte NADPH oxidase. This work demonstrates the crucial role of a Rac1-regulated oxidase in mediating the production of injurious reactive oxygen species, which contribute to acute necrotic and apoptotic cell death induced by ischemia/reperfusion in vivo. Targeted inhibition of this oxidase, which is distinct from the phagocyte NADPH oxidase, should provide a new avenue for in vivo therapy aimed at protecting organs at risk from ischemia/reperfusion injury.-Ozaki, M., Deshpande, S. S., Angkeow, P., Bellan, J., Lowenstein, C. J., Dinauer, M. C., Goldschmidt-Clermont, P. J., Irani, K. Inhibition of the Rac1 GTPase protects against nonlethal ischemia/reperfusion-induced necrosis and apoptosis in vivo.
Vascular endothelial growth factor (VEGF) is a potent vascular endothelial cell-specific mitogen that modulates endothelial cell function. In the present study, we show that VEGF induces manganese-superoxide dismutase (MnSOD) mRNA and protein in human coronary artery endothelial cells (HCAEC) and pulmonary artery endothelial cells. VEGF-mediated induction of MnSOD mRNA was inhibited by pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI), and 4-(2-aminoethyl)-benzenesulfonyl fluoride, but not with the nitric oxide synthase inhibitor L-NAME (N-monomethyl-L-arginine) or the xanthine oxidase inhibitor allopurinol. VEGF stimulation of MnSOD was also inhibited by adenoviral-mediated overexpression of catalase Cu, Zn-SOD and a dominant-negative form of the small GTPase component of NADPH oxidase Rac1 (Rac1N17). Treatment of HCAEC with VEGF resulted in a transient increase in ROS production at 20 min, as measured by 2,7-dichlorodihydrofluorescein oxidation. This effect was abrogated by expression of Rac1N17. Taken together, these findings suggest that VEGF induces MnSOD by an NADPH oxidase-dependent mechanism and that VEGF signaling in the endothelium is coupled to the redox state of the cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.