This paper numerically investigates the heat transfer enhancement using rectangular winglet pairs in a fin-and-tube type heat transfer surface having five inline rows of tubes. The influence of number of winglets, attack angles of the winglets, and their location has been analyzed under laminar flow conditions with Reynolds number ranging 400–1500. To account for the combined effect of heat transfer enhancement and pressure drop penalty, an enhancement factor is also discussed by changing the winglet pair's number and location. The numerical results show that pressure drop can be reduced significantly by placing the winglet more toward the exit of the flow channel. Streamwise distance and spanwise distance of the winglet pairs have been investigated for maximum enhancement factor. The numerically obtained results show that the winglets number and their placement at different locations have a major influence on enhancement factor. The results show that both the heat transfer and the pressure drop increase with an increase in attack angle of the winglets and best angle for the highest enhancement factor has been found out. Correlations have been developed for streamwise distance, spanwise distance, and angle of attack for different range of Reynolds numbers.
In this paper numerical simulations were performed utilizing Computational fluid dynamics code Fluent to investigate the thermo-fluid performance of a wavy rectangular winglet supported fin-and-tube heat exchanger with five inline rows of circular tubes. The influence of wave height, number of waves, wavy winglet length and winglet attack angle on the thermo-fluid performance of the fin-and-tube heat transfer surface has been examined under laminar flow conditions. Further the Plain and wavy rectangular winglets are placed together over different tube locations and their effect on heat transfer and flow resistance is also examined. An enhancement factor has also been discussed to summarize the overall thermo-fluid performance. The results show that increase in the wave height increase both heat transfer and pressure drop, and an optimum wave height could be decided based on the enhancement factor. It is also found that the increase in wavy winglet length guides the flow more effectively towards the tubes wake region. It is also observed that with increase in number of waves the heat transfer performance initially increases and then decreases as the wave pitch becomes very small. For wavy winglet supported heat exchanger the optimum attack angle is found out for maximum enhancement factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.