Background Multiple sclerosis (MS) is a major cause of neurological disability in adults. Depression is one of the most common psychiatric comorbidities in MS patients with negative impact on patients’ quality of life. The aim of the study is to evaluate the role of diffusion tensor imaging (DTI) in monitoring the therapeutic response after high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) versus selective serotonin reuptake inhibitor (SSRI) therapy for relapsing remitting multiple sclerosis (RRMS) patients presenting with depression by measuring the factional anisotropy of the dorsolateral prefrontal cortex (DLPFC) before and after treatment and also to assess the treatments’ impact on patients’ cognitive functions and depression. Results Fractional anisotropy (FA) only increased in rTMS group (0.44 ± 0.03 pre-rTMS vs 0.53 ± 0.05 post-rTMS, P < 0.001), but there were no significant changes in the SSRI group (0.44 ± 0.04 pre-SSRIs vs 0.45 ± .37 post-SSRIs, P = 0.072). Both rTMS and SSRI groups showed significant clinical improvement in Beck Depression Inventory (BDI) and Paced Auditory Serial Addition Test (PASAT) after either intervention (17.6 ± 3.25 pre-rTMS vs 10.6 ± 1.89 post-rTMS and 23 ± 6.36 pre-rTMS vs 24.87 ± 6.6 post-rTMS, respectively, P < 0.001; 17.67 ± 3.15 pre-SSRIs vs 0.6 ± 1.84 post-SSRIs and 23.8 ± 6.45 pre-SSRIs vs 25.07 ± 7.02 post-SSRIs, respectively, P < 0.001). Conclusion DTI is an ideal non-invasive tool for examining white matter integrity and can detect microstructural changes in the dorsolateral prefrontal cortex after rTMS and SSRI therapies for patients with MS and depression. FA increased only with rTMS denoting positive alteration in white matter microstructure. Both rTMS and SSRIs were equally effective in improving depression and cognition.
Background: Multiple sclerosis is one of the commonest causes of neurological disability in middle-aged and young adults. Depression in MS patients can compromise cognitive functions, lead to suicide attempts, impair relationships and reduce compliance with disease-modifying treatments. The aim of this study was to investigate and compare the microstructural changes in the white matter tracts of the limbic system in MS patients with and those without depressive manifestations using a diffusion tensor imaging (DTI) technique. Methods: This study included 40 patients who were divided into three groups. Group 1 comprised of 20 patients with relapsing-remitting MS with depressive symptoms and group 2 comprised 10 MS patients without symptoms of depression. The third group is a control group that included 10 age-matched healthy individuals. All patients underwent conventional MRI examinations and DTI to compare the fractional anisotropy (FA) values in the white matter tracts of the limbic system. Results: We compared the DTI findings in MS patients with and those without depressive symptoms. It was found that patients with depression and MS exhibited a significant reduction in the FA values of the cingulum (P < 0.0111 on the right and P < 0.0142 on the left), uncinate fasciculus (P < 0.0001 on the right and P < 0.0076 on the left) and the fornix (P < 0.0001 on both sides). No significant difference was found between the FA values of the anterior thalamic radiations in both groups. Conclusion: Patients with depression and MS showed more pronounced microstructural damage in the major white matter connections of the limbic pathway, namely, the uncinate fasciculus, cingulum and fornix. These changes can be detected by DTI as decreased FA values in depressed MS patients compared to those in non-depressed patients.
Background Hepatocellular carcinoma (HCC) is considered as one of the major causes of morbidity and mortality worldwide. Microwave ablation (MWA) is a widely used treatment option having less morbidity and complications as compared with surgery and liver transplantation. MRI is the most widely used modality in the assessment of treatment response after MWA. Currently, LI-RADS v2018 algorithm is considered the cornerstone in daily clinical practice for assessment of the treatment response after locoregional therapy. The aim of the study was to assess the role of dynamic MRI and diffusion imaging in the assessment of treatment response and detection of tumor viability following microwave ablation therapy of HCC according to LI-RADS v2018 treatment response algorithm. Results This retrospective study was performed over 45 HCC lesions underwent MWA as the only therapeutic procedure and followed up by dynamic MRI with diffusion images and then classified according to the LI-RADS treatment response criteria into LR-TR viable and LR-TR nonviable groups. All the malignant lesions found in this study showed arterial phase hyperenhancment (APHE), whether in the early or late arterial phases. Delayed washout was found in all malignant lesions as well. In the diffusion analysis, the mean ADC value for the malignant lesions was 0.900 ± 0.126 × 10-3 mm2/s, while the mean ADC of the treatment-related specific benign parenchymal enhancement was 1.284 ± 0.129 × 10-3 mm2/s with a significant statistical difference in between (P = 0.0001) and a cutoff value of 1.11 × 10-3 mm2/s. Our findings showed that the dynamic MRI has 100% sensitivity, 93.5% specificity, 87.5% PPV, and 100% NPV in the detection of tumoral activity compared with 71.43% sensitivity, 93.55% specificity, 83.33% PPV, and 87.88% NPV for diffusion images. Conclusion LI-RADS 2018 provides a treatment response algorithm superior to the previously used assessment criteria. MRI with dynamic contrast-enhanced technique and diffusion imaging provide a powerful tool in the evaluation of treatment response after microwave ablation of hepatocellular carcinoma using the LI-RADS treatment response criteria and is considered a reliable method in differentiating between the recurrent or residual malignant lesions and the posttreatment benign liver changes.
Background Multiple sclerosis (MS) is a common chronic inflammatory demyelinating disorder more common in young adults. MS is characterized mainly with white matter (WM) affection; however, considerable gray matter (GM) involvement is also noted in many patients. MRI is used for diagnosis and follow up of the disease using different pulse sequences; FLAIR imaging provides the highest sensitivity in the detection of supratentorial, juxtacortical, and the periventricular lesions but is less sensitive in the posterior fossa. A double inversion recovery (DIR) pulse sequence was recently introduced to improve the visibility of GM lesions and especially cortical lesions. The aim of this study is to assess the role of DIR sequence in the detection of brain lesions in patients with MS compared to FLAIR sequence. Results DIR showed a significantly higher number of MS lesions in infratentorial region (2.9 ± 0.4 compared to 2.25 ± 0.3 in FLAIR) with a statistically significant difference (p = 0.002) and also in supratentorial periventricular regions (11.84 ± 8.07 in DIR and 11.31 ± 8.07 in FLAIR, p < 0.001). DIR imaging also demonstrated significantly more intracortical lesions (7.12 ± 1.2 compared to 1.4 ± 0.9 in FLAIR imaging) with a statistically significant difference (p < 0.001). On the other hand, corpus callosum lesions were significantly higher on FLAIR (0.84 ± 0.1) with respect to DIR imaging (0.68 ± 0.1) with a statistically significant difference in between (p = 0.025). Conclusion DIR is a powerful conventional MRI sequence for visualization of brain lesions in patients with MS and is superior to FLAIR sequence in detecting lesions in different locations, namely cortical, periventricular, and infratentorial regions; hence, DIR can be added to the MRI protocol of MS patients or even can replace FLAIR which would be of a good diagnostic value with only 80 s added to the scan time.
Background Head and neck cancer has been labeled as the fifth most common cancer. Lymph node (LN) metastases were reported as the most important predatory factor for diagnosis and selection of suitable treatment. Diffusion-weighted (DW) magnetic resonance (MR) imaging is a very important tool that gives quantitative data in several compartments. This work aims to evaluate the diagnostic value of diffusion-weighted as a part of the magnetic resonance imaging in patients with head and neck cancer to allow differentiation of lymph nodes, cancer staging, assessment of recurrence, and evaluation of the effects of oncologic therapy. Results The size of pathologically proven benign LNs ranged from 1 to 3 cm (1.71 ± 0.724) and malignant LNs ranged from 1.1 to 5.6 cm (2.54 ± 0.92) (P = 0.0103). The ADC value for benign LNs ranged from 1.26 × 10−3 to 2.49 × 10−3 (mean 1.98 × 10−3 ± 0.32 × 10−3), and malignant LNs from 0.608 × 10−3 to 2.1 × 10−3 (mean 0.971 × 10−3 ± 0.305 × 10−3) (P < 0.001) with sensitivity and a specificity of 94% and 100% respectively. The ADC value for metastatic LNs ranged from 0.70 × 10−3 to 2.10 × 10−3 (1.08 × 10−3 ± 0.31 × 10−3) while lymphomatous nodes ranged 0.608 × 10−3 to 1.16 × 10−3 (0.78 × 10−3 ± 0.17 × 10−3). In this study, a significant statistical difference was also observed between the ADC value of the SCC and lymphomatous LN (P = 0.0034) with sensitivity and a specificity of 90% and 75% respectively. Conclusion Diffusion-weighted MR imaging is an effective assist in differentiating benign and malignant lymph nodes. It acts as an indicator for recovery or recurrence after chemotherapy and radiotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.