Biopolymers are good carrier materials in relation to efficient release sustainability for encapsulated drugs. In particular, electrospun polymer/composite fibre membranes can offer greater benefits owing to their competitive release features as well as large specific surface areas. In this study, multiple electrospun nanofibre membrane systems were utilised including different material systems such as poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL), and PCL/magnetic nanoparticle (MP) composites loaded with tetracycline hydrochloride (TCH) as a therapeutic compound for their potential use in drug delivery applications. Such electrospun nanofibres were investigated to understand how composite constituents could tailor surface morphology for drug release control and biodegradation effect of PCL electrospun nanofibers on a long term for different drug release systems. Fibre diameter appeared to be decreased considerably with the addition of TCH drug. It was also evident that average fibre diameter was reduced when embedding MPs owing to the enhancement of solution conductivity. The encapsulation of TCH drug was found to be effective, as evidenced by Fourier transform infrared (FTIR) spectra. Thermogravimetric analysis (TGA) data revealed no significant change in the thermal stability of PCL with the inclusion of TCH and MPs. However, the use of TCH to PLA delayed the thermal degradation. Glass transition temperature ( T g ) and melting temperature ( T m ) of PCL were decreased with the inclusion of MPs and TCH. The degree of crystallinity ( X c ) for PCL diminished when incorporated with MPs. Additional TCH to PLA, PCL, and PCL/MP nanocomposites resulted in a moderate decrease in X c . TCH might be dispersed in an amorphous state within nanofibre membranes. Over the short-term periods, it was clearly seen that TCH release from PCL nanofibre membranes was higher as opposed to PLC/MP and PLA counterparts. On the contrary, such a drug release from PLC membranes became relatively slow owing to its high X c . Further, the mass loss results were consistent with those obtained from in vitro drug release. Overall, TCH release kinetics of PCL/TCH nanofibre membranes were better estimated by Zeng model as opposed to PLA/TCH counterparts.
Electrospinning is a flexible polymer processing method to produce nanofibres, which can be applied in the biomedical field. The current study aims to develop new electrospun hybrid nanocomposite systems to benefit the sustained release of hydrophilic drugs with hydrophobic polymers. In particular, electrospun hybrid materials consisting of polylactic acid (PLA):poly(ε-caprolactone) (PCL) blends, as well as PLA:PCL/halloysite nanotubes-3-aminopropyltriethoxysilane (HNT-ASP) nanocomposites were developed in order to achieve sustained release of hydrophilic drug tetracycline hydrochloride (TCH) using hydrophobic PLA:PCL nanocomposite membranes as a drug carrier. The impact of interaction between two commonly used drugs, namely TCH and indomethacin (IMC) and PLA:PCL blends on the drug release was examined. The drug release kinetics by fitting the experimental release data with five mathematical models for drug delivery were clearly demonstrated. The average nanofiber diameters were found to be significantly reduced when increasing the TCH concentration due to increasing solution electrical conductivity in contrast to the presence of IMC. The addition of both TCH and IMC drugs to PLA:PCL blends reduced the crystallinity level, glass transition temperature (Tg) and melting temperature (Tm) of PCL within the blends. The decrease in drug release and the impairment elimination for the interaction between polymer blends and drugs was accomplished by mobilising TCH into HNT-ASP for their embedding effect into PLA:PCL nanofibres. The typical characteristic was clearly identified with excellent agreement between our experimental data obtained and Ritger–Peppas model and Zeng model in drug release kinetics. The biodegradation behaviour of nanofibre membranes indicated the effective incorporation of TCH onto HNT-ASP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.