For shallow groundwater, hydrogeochemical processes and quality assessment must be addressed because shallow groundwater is freely available in many parts of the globe. Due to recent anthropogenic activities and environmental changes in Sakrand, Sindh, Pakistan, the groundwater is extremely vulnerable. To provide safe drinking and agricultural water, hydrogeochemical analysis is required. Ninety-five groundwater samples were analyzed using agricultural and drinking indices to determine the hydrogeochemical parameters using multivariate analysis such as Pearson correlations, principal component cluster analysis, as well as Piper diagrams and Gibbs plot for drinking and agricultural indices. An abundance of ions was observed through the statistical summary; however, cations and anions were recorded in the orders Na+ > Ca2+ > Mg2+ > K+ and HCO3− > Cl− > SO42− > NO3− > F−. The hydrogeochemical process used to quantify the major reactions occurring in the groundwater system showed rock dominance; the Piper diagrams evaluated the water type. A mixed pattern of calcium, magnesium, and chloride ions (Ca2+−Mg2+−Cl− type) was observed. Additionally, the ion exchange method showed an excess of bicarbonate ions due to carbonic acid weathering. The water quality index (WQI) resulted 32.6% of groundwater being unsuitable for human consumption; however, the United States Salinity Laboratory (USSL) diagram showed 60% of samples fall in the irrigable category and the Wilcox diagram depicted 5% of samples lying in the unsuitable region. Most of the water samples were suitable for drinking; only a few samples were unsafe for drinking purposes for children due to the high hazard index. High salinity meant some samples were unsuitable for irrigation.
Groundwater is a critical water supply for safe drinking water, agriculture, and industry worldwide. In the Khanewal district of Punjab, Pakistan, groundwater has severely deteriorated during the last few decades due to environmental changes and anthropogenic activities. Therefore, 68 groundwater samples were collected and analyzed for their main ions and trace elements to investigate the suitability of groundwater sources for drinking and agricultural purposes. Principal component analysis (PCA) and cluster analysis (CA) were employed to determine the major factors influencing groundwater quality. To assess the groundwater’s appropriateness for drinking and irrigation, drinking and agricultural indices were used. The pH of the groundwater samples ranged from 6.9 to 9.2, indicating that the aquifers were slightly acidic to alkaline. The major cations were distributed as follows: Na+ > Ca2+ > Mg2+ > K+. Meanwhile, the anions are distributed as follows: HCO3− > SO42− > Cl− > F−. The main hydrochemical facies were identified as a mixed type; however, a mixed magnesium, calcium, and chloride pattern was observed. The reverse ion exchange process helps in exchanging Na+ with Ca2+ and Mg2+ ions in the groundwater system. Rock weathering processes, such as the dissolution of calcite, dolomite, and gypsum minerals, dominated the groundwater hydrochemistry. According to the Weight Arithmetic Water Quality Index (WAWQI), 50% of the water samples were unsafe for drinking. The Wilcox diagram, USSL diagram, and some other agricultural indices resulted in around 32% of the groundwater samples being unsuitable for irrigation purposes. The Khanewal’s groundwater quality was vulnerable due to geology and the influence of anthropogenic activities. For groundwater sustainability in Khanewal, management strategies and policies are required.
Soil-bound polycyclic aromatic hydrocarbons (PAHs) in farmland are critical to human health. The level, composition, source, and cancer risk of sixteen PAHs in agricultural soil from Ningde, China, were investigated. The results indicated that the total concentrations of 16 PAHs ranged from 77.3 to 1188 ng g, with a mean value of 406 ng g. Five-ring PAHs were found to have the highest concentrations (148 ± 133 ng g), followed by four-ring (120 ± 101 ng g), three-ring (61.9 ± 54.2 ng g), six-ring (44.6 ± 61.0 ng g), and two-ring (31.3 ± 31.0 ng g). Employing positive matrix factorization (PMF), four PAH sources including biomass burning (36.3%), coal combustion (35.5%), traffic emissions (16.4%), and coke source (11.8%) were identified. Incremental lifetime cancer risk (ILCR) results showed that ILCR values ranged from 7.1 × 10 to 1.1 × 10, which will cause moderate-to-high cancer risk to human health mainly via the soil ingestion and dermal contact exposure pathways. The source-oriented results indicated that coal combustion (32.7%), traffic emission (34.3%), and biomass burning (32.4%) had similar contributions to the total cancer risk. Therefore, more attention should be paid to these pyrolysis-originated sources to protect humanity from the health risk of PAHs.
Contamination of arsenic (As) in water, especially groundwater, has been recognized as a major problem across the world. The presence of arsenic in groundwater has become a global problem in the past decades. Health risks have also been reported for many years. Different areas of the world are affected by arsenic contamination of groundwater, the largest population at risk in Bangladesh, followed by West Bengal in India. Arsenic concentrations in drinking water cause severe health effects on human, more than 150 million people worldwide. The current drinking water standard regulation has become strict and requires a reduction in arsenic content. Therefore, the treatment of arsenic contaminants can be the only effective option to reduce health risks. This review paper briefly describes arsenic sources, arsenic chemistry, arsenic contamination in groundwater, its impact on human health and many conventional as well as advanced techniques that are used to remove arsenic from water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.