Ti-doped ZnO nanorod arrays were grown onto Si substrate using chemical bath deposition (CBD) method at 93 °C. To investigate the effect of time deposition on the morphological, and structural properties, four Ti-doped ZnO samples were prepared at various deposition periods of time (2, 3.5, 5, and 6.5 h). FESEM images displayed high-quality and uniform nanorods with a mean length strongly dependent upon deposition time; i.e. it increases for prolonged growth time. Additionally, EFTEM images reveal a strong erosion on the lateral side for the sample prepared for 6.5 h as compared to 5 h. This might be attributed to the dissolution reaction of ZnO with for prolonged growth time. XRD analysis confirms the formation of a hexagonal wurtzite-type structure for all samples with a preferred growth orientation along the c-axis direction. The (100) peak intensity was enhanced and then quenched, which might be the result of an erosion on the lateral side of nanorods as seen in EFTEM. This study confirms the important role of growth time on the morphological features of Ti-doped ZnO nanorods prepared using CBD.
In this study, an inexpensive simple method for the fabrication of efficient hydrogen (H 2 ) gas sensor based on carbon nanotubes (CNTs) was presented. The CNTs were synthesized using microwave oven and deposited onto SiO 2 substrate by a dielectrophoretic method. The as-grown CNTs showed an n-type behavior because CNTs possess the characters of both metallic and semiconductor when placed between the two electrodes, meanwhile, the current was directed mostly by metallic tubes. Upon exposure to H 2 gas at room temperature, the CNTs exhibited high sensitivity up to 315% at 140 ppm H 2 , and relatively good sensitivity of 40% at a very low H 2 gas concentration of 20 ppm. To the best of our knowledge, this is the first work involving the fabrication of CNTs for detecting a low H 2 gas concentration of 20 ppm at RT with high sensitivity comparing with other previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.