Segmentation of the Left ventricle (LV) is a crucial step for quantitative measurements such as area, volume, and ejection fraction. However, the automatic LV segmentation in 2D echocardiographic images is a challenging task due to ill-defined borders, and operator dependence issues (insufficient reproducibility). U-net, which is a well-known architecture in medical image segmentation, addressed this problem through an encoder-decoder path. Despite outstanding overall performance, U-net ignores the contribution of all semantic strengths in the segmentation procedure. In the present study, we have proposed a novel architecture to tackle this drawback. Feature maps in all levels of the decoder path of U-net are concatenated, their depths are equalized, and up-sampled to a fixed dimension. This stack of feature maps would be the input of the semantic segmentation layer. The proposed network yielded state-of-the-art results when comparing with results from U-net, dilated U-net, and deeplabv3, using the same dataset. An average Dice Metric (DM) of 0.945, Hausdorff Distance (HD) of 1.62, Jaccard Coefficient (JC) of 0.97, and Mean Absolute Distance (MAD) of 1.32 are achieved. The correlation graph, bland-altman analysis, and box plot showed a great agreement between automatic and manually calculated volume, area, and length.
We present a deep learning (DL)‐based automated whole lung and COVID‐19 pneumonia infectious lesions (COLI‐Net) detection and segmentation from chest computed tomography (CT) images. This multicenter/multiscanner study involved 2368 (347′259 2D slices) and 190 (17 341 2D slices) volumetric CT exams along with their corresponding manual segmentation of lungs and lesions, respectively. All images were cropped, resized, and the intensity values clipped and normalized. A residual network with non‐square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID‐19 lesions segmentation was evaluated on an external reverse transcription‐polymerase chain reaction positive COVID‐19 dataset (7′333 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. The mean Dice coefficients were 0.98 ± 0.011 (95% CI, 0.98–0.99) and 0.91 ± 0.038 (95% CI, 0.90–0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03 ± 0.84% (95% CI, −0.12 to 0.18) and −0.18 ± 3.4% (95% CI, −0.8 to 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38 ± 1.2% (95% CI, 0.16–0.59) and 0.81 ± 6.6% (95% CI, −0.39 to 2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the range first‐order feature (−6.95%) and least axis length shape feature (8.68%) for lesions. We developed an automated DL‐guided three‐dimensional whole lung and infected regions segmentation in COVID‐19 patients to provide fast, consistent, robust, and human error immune framework for lung and pneumonia lesion detection and quantification.
Background We present a deep learning (DL)-based automated whole lung and COVID-19 pneumonia infectious lesions (COLI-Net) detection and segmentation from chest CT images. Methods We prepared 2358 ( 347259, 2D slices) and 180 (17341, 2D slices) volumetric CT images along with their corresponding manual segmentation of lungs and lesions, respectively, in the framework of a multi-center/multi-scanner study. All images were cropped, resized and the intensity values clipped and normalized. A residual network (ResNet) with non-square Dice loss function built upon TensorFlow was employed. The accuracy of lung and COVID-19 lesions segmentation was evaluated on an external RT-PCR positive COVID-19 dataset (7333, 2D slices) collected at five different centers. To evaluate the segmentation performance, we calculated different quantitative metrics, including radiomic features. Results The mean Dice coefficients were 0.98&0.011 (95% CI, 0.98-0.99) and 0.91&0.038 (95% CI, 0.90-0.91) for lung and lesions segmentation, respectively. The mean relative Hounsfield unit differences were 0.03&0.84% (95% CI, -0.12-0.18) and -0.18&3.4% (95% CI, -0.8 - 0.44) for the lung and lesions, respectively. The relative volume difference for lung and lesions were 0.38&1.2% (95% CI, 0.16-0.59) and 0.81&6.6% (95% CI, -0.39-2), respectively. Most radiomic features had a mean relative error less than 5% with the highest mean relative error achieved for the lung for the Range first-order feature (-6.95%) and least axis length shape feature (8.68%) for lesions. Conclusion We set out to develop an automated deep learning-guided three-dimensional whole lung and infected regions segmentation in COVID-19 patients in order to develop fast, consistent, robust and human error immune framework for lung and pneumonia lesion detection and quantification. Keywords: X-ray CT, COVID-19, pneumonia, deep learning, segmentation.
A: Convolutional neural networks (CNNs) have found applications in many image processing tasks, such as feature extraction, image classification, and object recognition. It has also been shown that the inverse of CNNs, so-called deconvolutional neural networks, can be used for inverse problems such as plasma tomography. In essence, plasma tomography consists in reconstructing the 2D plasma profile on a poloidal cross-section of a fusion device, based on line-integrated measurements from multiple radiation detectors. Since the reconstruction process is computationally intensive, a deconvolutional neural network trained to produce the same results will yield a significant computational speedup, at the expense of a small error which can be assessed using different metrics. In this work, we discuss the design principles behind such networks, including the use of multiple layers, how they can be stacked, and how their dimensions can be tuned according to the number of detectors and the desired tomographic resolution for a given fusion device. We describe the application of such networks at JET and COMPASS, where at JET we use the bolometer system, and at COMPASS we use the soft X-ray diagnostic based on photodiode arrays. K : Computerized Tomography (CT) and Computed Radiography (CR); Plasma diagnostics -interferometry, spectroscopy and imaging 1Corresponding author. 2See the author list of Overview of the JET preparation for Deuterium-Tritium Operation by E. Joffrin et al. in Nucl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.