Diabetes and related complications are associated with long-term damage and failure of various organ systems. The line of demarcation between the pathogenic mechanisms of microvascular and macrovascular complications of diabetes and differing responses to therapeutic interventions is blurred. Diabetes induces changes in the microvasculature, causing extracellular matrix protein synthesis, and capillary basement membrane thickening which are the pathognomic features of diabetic microangiopathy. These changes in conjunction with advanced glycation end products, oxidative stress, low grade inflammation, and neovascularization of vasa vasorum can lead to macrovascular complications. Hyperglycemia is the principal cause of microvasculopathy but also appears to play an important role in causation of macrovasculopathy. There is thought to be an intersection between micro and macro vascular complications, but the two disorders seem to be strongly interconnected, with micro vascular diseases promoting atherosclerosis through processes such as hypoxia and changes in vasa vasorum. It is thus imperative to understand whether microvascular complications distinctly precede macrovascular complications or do both of them progress simultaneously as a continuum. This will allow re-focusing on the clinical issues with a unifying perspective which can improve type 2 diabetes mellitus outcomes.
It is critical to integrate medical nutrition therapy (MNT) provided by a registered dietician (RD) into primary care of type 2 diabetes mellitus (T2DM). This is necessary to achieve the goals of improving overall metabolic measures beyond calorie restriction and weight loss. Misconceptions about nutrition in T2DM add to the challenges of executing MNT in a culturally sensitive population. The current review provides insights into MNT for the prevention and management of T2DM in India, based on both evidence and experience. It revisits historical Indian studies and provides information on appropriate dietary intake of carbohydrates (60–70%), proteins (~ 20%) and fats (10%) that will be acceptable and beneficial in an Indian T2DM population. It discusses nuances of types of carbohydrates and fats and explains associations of increased dietary fiber intake, balanced intake of low and high glycemic index foods and substitution of saturated fats with plant-based polyunsaturated fats in improving outcomes of T2DM and attenuating risk factors. The article also deliberates upon special patient populations with comorbid conditions and diseases and the necessary adjustments needed in their nutritional care. It outlines a step-wise approach to MNT involving a careful interplay of nutrition assessment, diagnosis, individualization and patient counseling. Overall, the success of MNT relies on providing accurate, acceptable and appropriate dietary choices for continued patient adherence. Collaborative efforts from diabetologists, endocrinologists, internists and RDs are required to prioritize and implement MNT in diabetes practice in India.Funding: Signutra Inc.
Histamine, a low molecular weight amine has been extensively studied for its various pharmacological profiles. Until recently histamine was thought to act on three receptors - H₁, H₂ and H₃. Merely a decade back, sequencing of human genome has revealed a new histamine receptor - H₄ receptor. This 390 amino acid sequenced receptor has around 38% homology with histamine H₃ receptor besides; the pharmacological profile of the protein is quite different from other histamine receptors. H₄ receptor is mainly expressed in mast cells and leukocytes and involves various physiological functions related to inflammation and allergy. Potent selective H₄ receptor agonists and antagonists have been synthesized and in vivo studies have indicated their action on H₄ receptor. In this review, structure, expression, homology sequence of H₄ receptor among the different species has been documented. Further, structure activity relationship (SAR) of H₄ ligands on the basis of their nucleus has been discussed in depth. In addition, anti-inflammatory effects of H₄ receptor antagonists, with special emphasis to JNJ7777120, a selective H₄ receptor antagonist have been focused exhaustively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.