This study proposes a refractive index sensor for the simultaneous detection of cancer and diabetes based on photonic crystals (PhC). The proposed PhC composed of silicon rods in the air bed arranged in a hexagonal lattice forms the fundamental structure. Two tubes are used to place the cancerous or diabetic samples for measurement. The sensor’s transmission characteristics are simulated and analyzed by solving Maxwell’s electromagnetic equations using the finite-difference time-domain approach for samples being studied. Therefore, diabetes and cancer are detected according to the changes in the refractive index of the samples using the laser source centered at 1550 nm. Considering the findings, the sensor’s geometry changes to adjust the suggested sensitivity and quality factor of structure. According to the results, transmission power ranges between 91 and 100% based on the sample. Moreover, sensitivity ranges from 1294 to 3080 nm/RIU and the maximum Figure of Mertie is nearly FOM = 1550.11 ± 150.11 RIU−1 with the detection in range 31 × 10−6 RIU. In addition, the small area (61.56 μm2) of biosensor results in its appropriateness for different uses in compact photonic integrated circuits. Next, we changed the shape of the dielectric rods and investigated their effects on the sensitivity parameter. The sensitivity and figure of merit after changes in the shape of dielectric rods and nanocavities are at best S = 20,393 nm/RIU and FOM = 9104.017 ± 606.93 RIU−1, receptively. In addition, the resolution detection range is 203.93 × 10−6 RIU.
In this work, a novel structure of an all-optical biosensor based on glass resonance cavities with high detection accuracy and sensitivity in two-dimensional photon crystal is designed and simulated. The free spectral range in which the structure performs well is about FSR = 630 nm. This sensor measures the concentration of glucose in human urine. Analyses to determine the glucose concentration in urine for a normal range (0~15 mg/dL) and urine despite glucose concentrations of 0.625, 1.25, 2.5, 5 and 10 g/dL in the wavelength range 1.326404~1.326426 μm have been conducted. The detection range is RIU = 0.2 × 10−7. The average bandwidth of the output resonance wavelengths is 0.34 nm in the lowest case. In the worst case, the percentage of optical signal power transmission is 77% with an amplitude of 1.303241 and, in the best case, 100% with an amplitude of 1.326404. The overall dimensions of the biosensor are 102.6 µm2 and the sensitivity is equal to S = 1360.02 nm/RIU and the important parameter of the Figure of Merit (FOM) for the proposed biosensor structure is equal to FOM = 1320.23 RIU−1.
In this study bupivacaine (BVC) was encapsulated in Nano-capsules of poly-ε-caprolactone (PCL) and its cytotoxicity in HaCaT (MTT) cells, its permeability in the oesophageal epithelium of pigs, as well as its anesthetic effect in the incision model of rat’s hind paw (electronic von Frey anesthesiometer) were evaluated. BVC and epinephrine-associated bupivacaine (BVC-Epi) have been compared to BVC-Nano and it was demonstrated that BVC-Nano had high physicochemical properties and remained stable for 120 days; also, encapsulation of bupivacaine did not affect its toxicity to HaCaT cells, but epinephrine reduced its toxicity. Although both methods of combination with epinephrine and encapsulation in nanocapsules resulted in an extended time of anesthesia, the efficacy of epinephrine was more favorable. The permeation evaluation indicated that encapsulation increased both the permeability coefficient and the steady-state flux of bupivacaine across the esophageal epithelium. BVC permeation was enhanced by encapsulation into Nano-capsules, as a new novel therapeutic strategy, facilitating future research as a topical anesthetic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.