Cerebral Dopamine Neurotrophic Factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain, and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its mode of action and significance, we examined the development of neurotransmitter systems from larval to adult mutant zebrafish lacking cdnf. Although a lack of cdnf did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of tyrosine hydroxylase 2 in the brain was elevated in cdnf mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. cdnf mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures.Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors .
A premature termination codon in the human histidine decarboxylase (Hdc) gene has been identified in a family suffering from Guilles de la Tourette syndrome (GTS). In the current study we investigated if mice lacking the histamine producing enzyme HDC share the morphological and cytological phenotype with GTS patients by using magnetic resonance (MRI) and diffusion tensor imaging (DTI), unbiased stereology and immunohistochemistry. Behavior of Hdc knock-out (Hdc KO) mice was assessed in an open field test. The results of stereological, volumetric and DTI analysis measurements showed no significant differences between control and Hdc KO mice. The numbers and distribution of GABAergic parvalbumin or nitric oxide-expressing and cholinergic interneurons were normal in Hdc KO mice. Cortical morphology and layering in adult Hdc KO mice were also preserved. In open field test Hdc KO mice showed impaired exploratory activity and habituation when introduced to novel environment. Our results indicate that Hdc deficiency in mice does not disturb the development of striatal and cortical interneurons and does not lead to the morphological and cytological phenotypes characterized by humans with GTS. Nevertheless, histamine deficiency leads to behavioral alterations probably due to neurotransmitter dysbalance on the level of the striatum.
Histamine/gamma-aminobutyric acid (GABA) neurons of posterior hypothalamus send wide projections to many brain areas and participate in stabilizing the wake state. Recent research has suggested that GABA released from the histamine/GABA neurons acts on extrasynaptic GABA A receptors and balances the excitatory effect of histamine. In the current study, we show the presence of vesicular GABA transporter mRNA in a majority of quantified hypothalamic histaminergic neurons, which suggest vesicular release of GABA. As histamine/GABA neurons form conventional synapses infrequently, it is possible that GABA released from these neurons diffuses to target areas by volume transmission and acts on extrasynaptic GABA receptors. To investigate this hypothesis, mice lacking extrasynaptic GABA A receptor d subunit (Gabrd KO) were used. A pharmacological approach was employed to activate histamine/GABA neurons and induce histamine and presumably, GABA, release. Control and Gabrd KO mice were treated with histamine receptor 3 (Hrh3) inverse agonists ciproxifan and pitolisant, which block Hrh3 autoreceptors on histamine/GABA neurons and histamine-dependently promote wakefulness. Low doses of ciproxifan (1 mg/kg) and pitolisant (5 mg/kg) reduced locomotion in Gabrd KO, but not in WT mice. EEG recording showed that Gabrd KO mice were also more sensitive to the wake-promoting effect of ciproxifan (3 mg/kg) than control mice. Low frequency delta waves, associated with NREM sleep, were significantly suppressed in Gabrd KO mice compared with the WT group. Ciproxifan-induced wakefulness was blocked by histamine synthesis inhibitor a-fluoromethylhistidine (aFMH). The findings indicate that both histamine and GABA, released from histamine/ GABA neurons, are involved in regulation of brain arousal states and d-containing subunit GABA A receptors are involved in mediating GABA response.
Cerebral Dopamine Neurotrophic Factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain, and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its mode of action and significance, we examined the development of neurotransmitter systems from larval to adult mutant zebrafish lacking cdnf. Although a lack of cdnf did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of tyrosine hydroxylase 2 in the brain was elevated in cdnf mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. cdnf mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures.Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors 3 3
The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.