Prealloyed (PA) and premixed (PM) W-brass with the composition of 60 wt% W, 1 wt% Ni and 39 wt% brass was sintered at the temperature of 800˚C, 920˚C and 1000˚C each. As a result of difficulties in the densification of W-Cu and W-Cu alloys, mechanical alloying (MA) and activated sintering were combined. The powders were mechanically alloyed for 13 hours to produce nanosized W grains embedded in brass. The microstructure and properties of these composites with increase in sintering temperature has been studied. Both prealloyed and premixed composites sintered at 800˚C (solid state sintering) and 920˚C (sub-solidus state sintering) have lower sintered densities and hardness. The densification rate in the premixed composites was observed to be higher than that of the prealloyed composites. Their densification and properties increased with the increase in the sintering temperature. Premixed composite sintered at 1000˚C had 91.0% sintered density, 180 Hv microhardness against 76.0% and 133 Hv respectively for prealloyed composite at the same temperature. The values of electrical conductivity in both prealloyed and premixed composites increased with increase in temperature.
The effects of 1% tin (Sn) addition on the densification of pre-alloyed and pre-mixed W-brass composites were carried out. The green compacts were produced with the pressure of 350MPa and sintered at the temperature of 800°C, 920°C and 1000°C. The Sn addition is aimed at inhibiting the dezincification (selective removal of zinc from an alloy) of the brass component by the elimination of pores and enhances densification. The hardness of the composites increased with increase in temperature, the densification was low at both temperatures while the electrical conductivity remains constant as a result of constant composition in both pre-alloyed and pre-mixed composites. The microstructures revealed pores, which might be as a result of zinc evaporation.
Fabrication of full-density W-brass composites is very difficult to achieve because of evaporation of zinc, insolubility of W and brass and compacts expansion. In this study, to achieve full-density W-brass composites, mechanical alloying (MA) and activated sintering process were utilized. Mechanical coating of W with Ni using high energy planetary ball mill was carried out. The milling was divided into two stages: to alloy and modify the surface of W with Ni for enhanced activation. The microstructure of the milled powders and sintered compacts, elemental composition and phases present were studied by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) respectively. As-received powder compacts was also sintered under the same condition for comparison purpose. The effects of milling time on the microstructure, sinterability and the hardness of the composites were investigated. It was observed that the samples produced from 8 h milled powder had the highest relative sintered density (98% TD) and microhardness (234 Hv). On the other hand, the samples from the as-received powders expanded and had a relative sintered density of (67% TD) and microhardness as low as 24 Hv. The significance of this study is the possibility of producing W-brass composites as a cheaper alternative to W-Cu composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.