Because of its safe and effective protein expression profile, in vitro transcribed messenger RNA (IVT-mRNA) represents a promising candidate in the development of novel therapeutics for genetic diseases, vaccines or gene editing strategies, especially when its inherent shortcomings (for example, instability and immunogenicity) have been partially addressed via structural modifications. However, numerous unsolved technical difficulties in successful in vivo delivery of IVT-mRNA have greatly hindered the applications of IVT-mRNA in clinical development. Recent advances in nanotechnology and material science have yielded many promising nonviral delivery systems, some of which were able to efficiently facilitate targeted in vivo delivery of IVT-mRNA in safe and noninvasive manners. The diversity and flexibility of these delivery systems highlight the recent progress of IVT-mRNA-based therapy using nonviral vectors. In this review, we summarize recent advances of existing and emerging nonviral vector-based nanotechnologies for IVT-mRNA delivery and briefly summarize the interesting but rarely discussed applications on simultaneous delivery of IVT-mRNA with DNA.
ALK receptor tyrosine kinase has been shown to be a therapeutic target in neuroblastoma. Germline ALK activating mutations are responsible for the majority of hereditary neuroblastoma and somatic ALK activating mutations are also frequently observed in sporadic cases of advanced NB. Crizotinib, a first-line therapy in the treatment of advanced non-small cell lung cancer (NSCLC) harboring ALK rearrangements, demonstrates striking efficacy against ALK-rearranged NB. However, crizotinib fails to effectively inhibit the activity of ALK when activating mutations are present within its kinase domain, as with the F1174L mutation. Here we show that a new ALK inhibitor AZD3463 effectively suppressed the proliferation of NB cell lines with wild type ALK (WT) as well as ALK activating mutations (F1174L and D1091N) by blocking the ALK-mediated PI3K/AKT/mTOR pathway and ultimately induced apoptosis and autophagy. In addition, AZD3463 enhanced the cytotoxic effects of doxorubicin on NB cells. AZD3463 also exhibited significant therapeutic efficacy on the growth of the NB tumors with WT and F1174L activating mutation ALK in orthotopic xenograft mouse models. These results indicate that AZD3463 is a promising therapeutic agent in the treatment of NB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.