Vegetable soybeans [Glycine max (L.) Merr.] have characteristics of larger seeds, less beany flavor, tender texture, and green-colored pods and seeds. Rich in nutrients, vegetable soybeans are conducive to preventing neurological disease. Due to the change of dietary habits and increasing health awareness, the demand for vegetable soybeans has increased. To conserve vegetable soybean germplasms in Taiwan, we built a core collection of vegetable soybeans, with minimum accessions, minimum redundancy, and maximum representation. Initially, a total of 213 vegetable soybean germplasms and 29 morphological traits were used to construct the core collection. After redundant accessions were removed, 200 accessions were retained as the entire collection, which was grouped into nine clusters. Here, we developed a modified Roger’s distance for mixed quantitative–qualitative phenotypes to select 30 accessions (denoted as the core collection) that had a maximum pairwise genetic distance. No significant differences were observed in all phenotypic traits (p-values > 0.05) between the entire and the core collections, except plant height. Compared to the entire collection, we found that most traits retained diversities, but seven traits were slightly lost (ranged from 2 to 9%) in the core collection. The core collection demonstrated a small percentage of significant mean difference (3.45%) and a large coincidence rate (97.70%), indicating representativeness of the entire collection. Furthermore, large values in variable rate (149.80%) and coverage (92.5%) were in line with high diversity retained in the core collection. The results suggested that phenotype-based core collection can retain diversity and genetic variability of vegetable soybeans, providing a basis for further research and breeding programs.
Establishment of vegetable soybean (edamame) [Glycine max (L.) Merr.] germplasms has been highly valued in Asia and the United States owing to the increasing market demand for edamame. The idea of core collection (CC) is to shorten the breeding program so as to improve the availability of germplasm resources. However, multidimensional phenotypes typically are highly correlated and have different levels of missing rate, often failing to capture the underlying pattern of germplasms and select CC precisely. These are commonly observed on correlated samples. To overcome such scenario, we introduced the “multiple imputation” (MI) method to iteratively impute missing phenotypes for 46 morphological traits and jointly analyzed high-dimensional imputed missing phenotypes (ECimpu) to explore population structure and relatedness among 200 Taiwanese vegetable soybean accessions. An advanced maximization strategy with a heuristic algorithm and PowerCore was used to evaluate the morphological diversity among the ECimpu. In total, 36 accessions (denoted as CCimpu) were efficiently selected representing high diversity and the entire coverage of the ECimpu. Only 4 (8.7%) traits showed slightly significant differences between the CCimpu and ECimpu. Compared to the ECimpu, 96% traits retained all characteristics or had a slight diversity loss in the CCimpu. The CCimpu exhibited a small percentage of significant mean difference (4.51%), and large coincidence rate (98.1%), variable rate (138.76%), and coverage (close to 100%), indicating the representativeness of the ECimpu. We noted that the CCimpu outperformed the CCraw in evaluation properties, suggesting that the multiple phenotype imputation method has the potential to deal with missing phenotypes in correlated samples efficiently and reliably without re-phenotyping accessions. Our results illustrated a significant role of imputed missing phenotypes in support of the MI-based framework for plant-breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.