The purpose of this study was to compare the power production characteristics of the jump squat (JS), hexagonal barbell jump (HEXJ), and jump shrug (JShrug) across a spectrum of relative loads. Fifteen resistance-trained men completed three testing sessions where they performed repetitions of either the JS, HEXJ, or JShrug at body mass (BM) or with 20, 40, 60, 80, or 100% of their BM. Relative peak power (PPRel), relative force at PP (FPP), and velocity at PP (VPP) were compared between exercises and loads. In addition, power-time curves at each load were compared between exercises. Load-averaged HEXJ and JShrug PPRel were statistically greater than the JS (both p < 0.01), while no difference existed between the HEXJ and the JShrug (p = 1.000). Load-averaged JShrug FPP was statistically greater than both the JS and the HEXJ (both p < 0.001), while no statistical difference existed between the JS and the HEXJ (p = 0.111). Load-averaged JS and HEXJ VPP were statistically greater than the JShrug (both p < 0.01). In addition, HEXJ VPP was statistically greater than the JS (p = 0.009). PPRel was maximized at 40, 40, and 20% BM for the JS, HEXJ, and JShrug, respectively. The JShrug possessed statistically different power-time characteristics compared to both the JS and the HEXJ during the countermovement and propulsion phases. The HEXJ and the JShrug appear to be superior exercises for PPRel compared to the JS. The HEXJ may be considered a more velocity-dominant exercise, while the JShrug may be a more force-dominant one.
Ti t l eTr ai ni n g wi t h w ei g h tlifti n g d e riv a tiv e s : t h e eff e c t s of fo r c e a n d v elocity ov e rlo a d s ti m uli
The purpose of this study was to examine the changes in squat jump (SJ) and countermovement jump (CMJ) force–time curve characteristics following 10 weeks of training with either load-matched weightlifting catching (CATCH) or pulling derivatives (PULL) or pulling derivatives that included force- and velocity-specific loading (OL). Twenty-five resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups. Participants completed a 10 week, group-specific training program. SJ and CMJ height, propulsion mean force, and propulsion time were compared at baseline and after 3, 7, and 10 weeks. In addition, time-normalized SJ and CMJ force–time curves were compared between baseline and after 10 weeks. No between-group differences were present for any of the examined variables, and only trivial to small changes existed within each group. The greatest improvements in SJ and CMJ height were produced by the OL and PULL groups, respectively, while only trivial changes were present for the CATCH group. These changes were underpinned by greater propulsion forces and reduced propulsion times. The OL group displayed significantly greater relative force during the SJ and CMJ compared to the PULL and CATCH groups, respectively. Training with weightlifting pulling derivatives may produce greater vertical jump adaptations compared to training with catching derivatives.
The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 resistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre- and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p > 0.05). The PULL group displayed small-moderate (g = 0.25-0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00-0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12-0.04) and velocity variables (g = 0.32-0.46), respectively. The OL group displayed moderate (g = 0.48-0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47-0.55) improvements. The CATCH group displayed trivial-small (g = -0.39-0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p > 0.05). Performing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.