Rockburst frequently occurs in deep underground engineering, which poses a threat to safety and causes economic losses. Water injection into surrounding rock masses is an effective method for preventing rockburst, and the moisture content of rocks is significant for assessing the probability of rockburst. However, the majority of studies focus on the relationship between the macromechanical properties of rock masses under static loads and the moisture content of rock masses and seldom explore the impact of moisture variation (under dynamic loads) on the mechanical properties and energy dissipation. In this paper, the mechanical properties and energy dissipation of sandstone with different moisture contents have been experimentally investigated by the split Hopkinson pressure bar (SHPB) test. The test results indicate that the peak strength, dynamic elastic modulus, and unloading elastic modulus of sandstone in dry conditions are considerably larger than those in moisture conditions, and the three parameters linearly decrease as the moisture content increases from 0% to 2.58%. The distribution law of sandstone fragments with different moisture contents has been investigated by sieving test fragments with different grain sizes of grading sieves. The results show that the percentage of large grain size fragments incrementally decreases, and the percentage of small grain size fragments incrementally increases with moisture contents from 0% to 2.58%. When the moisture content ranges from 2.01%∼2.58%, the fractal dimension linearly increases, which indicates that the higher the moisture content is, the larger the dimension of the broken sandstone is. The calculation results for energy indicate that the sandstone energy attains the peak value with 0% moisture content. When the moisture content ranges from 2.01%∼2.58%, the reflected energy increases, and the transmitted energy and dissipated energy linearly decrease. In addition, the surface energy of the sandstone with different moisture contents has been investigated by converting fragments into spheres with the corresponding size. The results indicate that the smallest surface area of sandstone is obtained in dry conditions, but its surface energy in dry conditions is larger than that in moisture conditions. When the moisture ranges from 0% to 2.58%, due to 3% illite and 2% chlorite clay minerals reacting with different proportions of moisture, the surface areas of sandstone fragments linearly increase and the surface energy of sandstone linearly decreases.
Rockburst frequently occurred in an unstable or violent manner, which posed great safety risk and economic loss in deep underground engineering. The water injection into rock stratum was one of the most effectively ways to reduce rockburst by weakening rock mechanics. However, the moisture content was an important index related to rock mechanical properties. Many previous studies focused on the relationship between the moisture contents and macromechanical properties of rock materials under static load and seldom explored the impact of moisture variation on the mechanical properties and brittle-ductile transition characteristics of rock materials under dynamic loads. In this paper, we studied the dynamic mechanical properties of sandstone with different moisture contents under the same strain rate by the Split Hopkinson Pressure Bar (SHPB) experimental system. The relationship between dynamic mechanical properties of sandstone and moisture content was studied, and a dynamic ductility coefficient was proposed, which could be determined by the ratio between the peak strain and the yield strain. Then, it was used to assess the critical moisture content of the brittle-ductile transition of the sandstone. Through scanning electron microscopy (SEM) examination, the microstructure of sandstones with different moisture contents was inspected at magnifications of 500, 2000, and 5000 times, respectively. We showed that as the moisture content increased, the dynamic peak strength and elastic modulus decreased at different degrees, whereas the dynamic peak strain and ductility coefficient exhibited a nonlinear increase, respectively. When the moisture content reached 2.23%, the variation ratio of the dynamic ductility coefficient commenced to increase obviously, indicating that the sandstone began to transit from brittle behavior to ductile behavior. When the sample magnification was 500 times, the microstructure of the sandstone samples with zero and 2.01% to 2.40% moisture content mainly displayed the step pattern and river pattern, respectively, showing that the damage mode was brittle fracture. When the moisture content ranged from 2.49% to 2.58%, the microstructure of the sample included a large number of dimple clusters with local snake patterns and belonged to ductile fracture. When the sample magnification was 2000 and 5000 times, the microstructure was mainly brittle fracture with a moisture content lower than 2.23%. The microstructure of the sample with moisture content of 2.23% exhibited brittle-ductile composite fracture form, whereas others exhibited obviously ductile fracture. These characteristics were fundamentally consistent with the results reflected by the dynamic ductility coefficient. Our findings could provide a theoretical basis for mitigating coal and rock bursts by injecting water methods in underground coal mines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.