Background: Local communities use animals and plants as common traditional therapies for various diseases. The study aimed to document animals and animal-plant mixture recipes that are used as alternative and complementary medicine in southern regions of Khyber Pakhtunkhwa, Pakistan.Methods: The data were collected (2017–2018) in three remote areas (Dera Ismail Khan, Bannu, and Lakki Marwat) through questionnaires and face-to-face interviews with local inhabitants. Data on ethnomedicinal uses and cultural values of animal products or parts and their mixture with plants were analyzed using various indices such as frequency of citation (FC), informant consensus (FIC), and fidelity level (FL) to find the highly preferred species in the area.Results: A total of 185 informants (117 females and 68 males) were interviewed. The study documented 32 animal species, vertebrates (n = 24) and invertebrates (n = 8), for curing 37 types of diseases. Mammals (n = 13) were among the most commonly utilized species followed by birds (n = 8), arthropods (n = 7), reptiles (n = 2), and fishes and annelids (n = 1 each). Among the reported animals, Herpestes edwardsi (mongoose), Macaca mulatta (monkey), Labeo rohita (rohu), Oryctolagus cuniculus (rabbit), and Streptopelia decaocto (dove) were the newly reported species used as alternative medicine. The meat of Capra hircus (goat), monkey, and rabbit was used to treat chronic diseases such as hepatitis C, cancer, epilepsy, and asthma. A total of 17 plants belonging to 15 botanical families were used in combination with animal parts/products. The commonly used families were Piperaceae (31%) followed by Apiaceae (27%). The notable plant species in combination with animal products were Curcuma longa, Piper nigrum, Coriandrum sativum, Brassica rapa, and Phoenix dactylifera. Seeds were the highest used part in animal-plant mixture recipes. Gallus gallus (chicken) and Columba livia (pigeon) secured the highest (FC = 28) and (FL = 80%), respectively. FIC results had shown the highest degree of consensus for general body weakness (FIC = 0.88) and pyrexia (FIC = 0.86).Conclusion: Our findings suggest that local communities in the southern regions of Khyber Pakhtunkhwa have substantial knowledge about the formulation of ethnomedicines from both flora and fauna that need urgent documentation to avoid eroding and for conservational purposes. The newly reported phytozootherapeutic recipes and animal species can potentially be a source of pharmacologically active constituents and should be checked experimentally for further confirmation.
Background:Haemonchus contortus is an important pathogenic nematode parasite and major economic constraint of small ruminants in tropics and subtropics regions. This review is an attempt to systematically address the; (a) efficacy of different plants against H. contortus by in vitro and in vivo proof; (b) toxicology, mechanism of action, and active phyto-compounds involve in anti-haemonchiasis activity; (c) and comparative analysis of plant species evaluated both in vitro and in vivo. Methods: Online databases (Google Scholar, PubMed, Scopus, and ScienceDirect) were searched and published research articles (1980–2020) were gathered and reviewed. Results: A total of 187 plant species were reported belonging to 59 families and 145 genera with Asteraceae and Fabaceae being frequently used. Out of the total plant species, 171 species were found to be evaluated in vitro and only 40 species in vivo. Twenty-four species were commonly evaluated for in vitro and in vivo anti-haemonchiasis activity. Among the reported assays, egg hatching test (EHT) and fecal egg count reduction (FECR) were the most widely used assays in vitro and in vivo, respectively. Moreover, sheep were the frequently used experimental model in vivo. After comparative analysis, Lachesiodendron viridiflorum, Corymbia citriodora, Calotropis procera, and Artemisia herba-alba were found highly effective both in vitro and in vivo. L. viridiflorum inhibited enzymatic activities and metabolic processes of the parasite and was found to be safe without toxic effects. C. citriodora was moderately toxic in vivo, however, the plant extract produced promising nematicidal effects by causing muscular disorganization and changes in the mitochondrial profile. Additionally, C. procera and A. herba-alba despite of their high anti-haemonchiasis activity were found to be highly toxic at the tested concentrations. C. procera caused perforation and tegumental disorganization along with adult worm paralysis. Nineteen compounds were reported, among which anethole and carvone completely inhibited egg hatching in vitro and significantly reduced fecal egg count, decreased male length, and reproductive capacity of female in vivo. Conclusion: This review summarized different medicinal plants owing to nematicidal activities against H. contortus eggs, larvae, and adult worms. Plants like L. viridiflorum, C. citriodora, C. procera, and A. herba-alba, while compounds anethole and carvone having promising nematicidal activities and could be an alternative source for developing novel drugs after further investigation.
Objectives The main objective of this review was to collect scattered literature on ethnomedicinal plants used to treat pneumonia and tuberculosis in the Himalayan region and their in‐vitro validation against bacterial pathogens. Key findings Current review contains information on ethnomedicines of total 137 plants from Himalaya region. Out of these, 59 plants have been studied in vitro against bacteria while seven plants extracts have been checked for their toxicological effects. The most commonly used plant families for pneumonia and tuberculosis therapy in the study region were Asteraceae, Bignoniaceae and Fabaceae (seven plants in each); of these, Curcuma longa L., Punica granatum L. and Justicia adhatoda L. carried the most inhibiting potential against Staphylococcus aureus and Streptococcus pneumoniae while that of Acalypha indica L. against Mycobacterium tuberculosis. Different compounds such as ascorbic acid, curcumin, vasicine, piperine, quercetin, myricetin and gallic acid being reportedly isolated from these plants possess antibacterial potential. Summary Himalayan region has variety of ethnomedicinal plants used against pneumonia and tuberculosis; however, studies on in‐vivo activity, toxicology and mechanism of action are very limited. Hence, detailed investigation on these aspects needs to be carried out for the development of novel antibacterial drugs from the studied plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.