Lithium-ion batteries (LIBs) are used extensively worldwide in a varied range of applications. However, LIBs present a considerable fire risk due to their flammable and frequently unstable components. This paper reviews experimental and numerical studies to understand parametric factors that have the greatest influence on the fire risks associated with LIBs. The LIB chemistry and the state of charge (SOC) are shown to have the greatest influence on the likelihood of a LIB transitioning into thermal runaway (TR) and releasing heats which can be cascaded to cause TR in adjacent cells. The magnitude of the heat release rate (HRR) is quantified to be used as a numerical model input parameter (source term). LIB chemistry, the SOC, and incident heat flux are proven to influence the magnitude of the HRR in all studies reviewed. Therefore, it may be conjectured that the most critical variables in addressing the overall fire safety and mitigating the probability of TR of LIBs are the chemistry and the SOC. The review of numerical modeling shows that it is quite challenging to reproduce experimental results with numerical simulations. Appropriate boundary conditions and fire properties as input parameters are required to model the onset of TR and heat transfer from thereon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.