Gasification of solid waste for energy has significant potential given an abundant feed supply and strong policy drivers. Nonetheless, significant ambiguities in the knowledge base are apparent. Consequently this study investigates sulphur mechanisms within a novel two stage fluid bed-plasma gasification process. This paper includes a detailed review of gasification and plasma fundamentals in relation to the specific process, along with insight on MSW based feedstock properties and sulphur pollutant therein. As a first step to understanding sulphur partitioning and speciation within the process, thermodynamic modelling of the fluid bed stage has been performed. Preliminary findings, supported by plant experience, indicate the prominence of solid phase sulphur species (as opposed to H(2)S) - Na and K based species in particular. Work is underway to further investigate and validate this.
The growing population and economic development globally has led to increasing resource consumption and waste generation. This has generated concern at local, national and international levels on environmental issues including air quality, resource scarcity, waste management (including plastics) and global warming. The resulting antipathy towards fossil fuels and waste landfilling has spurred the demand for alternative bioenergy and biofuels production methods, making use of abundant biomass and waste feedstock. Although not new concepts, there has been renewed impetus recently to develop advanced thermochemical processes such as pyrolysis and gasification to treat biomass and municipal solid waste (including refuse-derived fuel therefrom). This is because these processes have the potential to add value to cheap and abundant materials by converting them into advanced biofuels and chemicals. The work presented in this paper is concerned principally with the technical analysis and review of new-generation, state-of-the-art systems based on fluidised bed reactors operated with biomass and solid waste. A comprehensive assessment of fluidised bed reactor types and operations is considered, with particular attention given to those processes aimed at the production of clean syngas for the subsequent synthesis of high-value products, including bio-hydrogen, synthetic natural gas (SNG), and liquid fuels.
Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO2 and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO2's generation. The response of COS to sulphur in the feed was quite prompt, whereas SO2 was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO2 generation. The more reducing gas phase regions above the bed would have facilitated COS--hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.