We report results on the explicit parameterisation of discrete Rossby-wave resonant triads of the Charney-Hasegawa-Mima equation in the small-scale limit (i.e. large Rossby deformation radius), following up from our previous solution in terms of elliptic curves (Bustamante and Hayat, 2013). We find an explicit parameterisation of the discrete resonant wavevectors in terms of two rational variables. We show that these new variables are restricted to a bounded region and find this region explicitly. We argue that this can be used to reduce the complexity of a direct numerical search for discrete triad resonances. Also, we introduce a new direct numerical method to search for discrete resonances. This numerical method has complexity O(N 3 ), where N is the largest wavenumber in the search. We apply this new method to find all discrete irreducible resonant triads in the wavevector box of size 5000, in a calculation that took about 10.5 days on a 16-core machine. Finally, based on our method of mapping to elliptic curves, we discuss some dynamical implications regarding the spread of quadratic invariants across scales via resonant triad interactions, in the form of sharp bounds on the size of the interacting wavevectors.
We study numerically the region of convergence of the normal form transformation for the case of the Charney-Hasagawa-Mima (CHM) equation to investigate whether certain finite amplitude effects can be described in normal coordinates. We do this by taking a Galerkin truncation of four Fourier modes making part of two triads: one resonant and one non-resonant, joined together by two common modes. We calculate the normal form transformation directly from the equations of motion of our reduced model, successively applying the algorithm to calculate the transformation up to 7 th order to eliminate all non-resonant terms, and keeping up to 8-wave resonances. We find that the amplitudes at which the normal form transformation diverge very closely match with the amplitudes at which a finite-amplitude phenomenon called precession resonance (Bustamante et al. 2014) occurs, characterised by strong energy transfers. This implies that the precession resonance mechanism cannot be explained using the usual methods of normal forms in wave turbulence theory, so a more general theory for intermediate nonlinearity is required.
In this work we consider the problem of finding the simplest arrangement of resonant deep-water gravity waves in one-dimensional propagation, from three perspectives: Theoretical, numerical and experimental. Theoretically this requires using a normal-form Hamiltonian that focuses on 5-wave resonances. The simplest arrangement is based on a triad of wavevectors K1+K2=K3 (satisfying specific ratios) along with their negatives, corresponding to a scenario of encountering wavepackets, amenable to experiments and numerical simulations. The normal-form equations for these encountering waves in resonance are shown to be non-integrable, but they admit an integrable reduction in a symmetric configuration. Numerical simulations of the governing equations in natural variables using pseudospectral methods require the inclusion of up to 6-wave interactions, which imposes a strong dealiasing cut-off in order to properly resolve the evolving waves. We study the resonance numerically by looking at a target mode in the base triad and showing that the energy transfer to this mode is more efficient when the system is close to satisfying the resonant conditions. We first look at encountering plane waves with base frequencies in the range 1.32–2.35 Hz and steepnesses below 0.1, and show that the time evolution of the target mode’s energy is dramatically changed at the resonance. We then look at a scenario that is closer to experiments: Encountering wavepackets in a 400-m long numerical tank, where the interaction time is reduced with respect to the plane-wave case but the resonance is still observed; by mimicking a probe measurement of surface elevation we obtain efficiencies of up to 10% in frequency space after including near-resonant contributions. Finally, we perform preliminary experiments of encountering wavepackets in a 35-m long tank, which seem to show that the resonance exists physically. The measured efficiencies via probe measurements of surface elevation are relatively small, indicating that a finer search is needed along with longer wave flumes with much larger amplitudes and lower frequency waves. A further analysis of phases generated from probe data via the analytic signal approach (using the Hilbert transform) shows a strong triad phase synchronisation at the resonance, thus providing independent experimental evidence of the resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.