A novel growth method (carbon molecular beam epitaxy (CMBE)) has been developed to produce high-quality and large-area epitaxial graphene. This method demonstrates significantly improved controllability of the graphene growth. CMBE with C(60) produces AB stacked graphene, while growth with the graphite filament results in non-Bernal stacked graphene layers with a Dirac-like electronic structure, which is similar to graphene grown by thermal decomposition on SiC (000-1).
X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.
The impact of post growth annealing on the electrical properties of a long wavelength infrared type-II superlattice (SL) was explored. Quarters of a single SL wafer were annealed at 440 °C, 480 °C, and 515 °C, respectively for 30 min. Changes in the electrical properties were followed using spectral photoconductivity, temperature dependent Hall effect, and time-resolved pump-probe measurements. The bandgap energy remained at ∼107 meV for each anneal, and the photoresponse spectra showed a 25% improvement. The carrier lifetime increased from 12 to ∼15 ns with annealing. The electron mobility was nearly constant for the 440 °C and 480 °C anneals, and increased from ∼4500 to 6300 cm2/Vs for the 515 °C anneal.
Monolayer molybdenum disulfide (MoS2), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS2 processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO3, and MoCl5 have been used to form a vapor reaction with sulfur, resulting in thin films of MoS2. Currently, MoO3 ribbons and powder, and MoCl5 powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS2 film growth. In this paper, the authors compare the structural properties of MoS2 grown by sulfurization of pulse vapor deposited MoO3 and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS2 structure. Reports show that rGO increases MoS2 grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS2 when rGO was used during sulfurization of both sputtered Mo and MoO3 precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS2 films produced from Mo when compared to the films produced from MoO3. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS2 films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.