Inorganic scale deposits are a major water-related problem encountered in producing oil and gas wells. The harshness of scale deposits is dependent on the field operating conditions. Scale deposits can vary from mild scaling tendencies to extreme. In general, the scale deposit will cause a reduction in formation pores, declining productivity and eventually blockage of the wellbore and hence unexpected downtime if it is allowed to persevere. To overcome this, the productivity of an oil and gas well is ensured by handling scale deposits via removal or prevention methods. Scale prevention is the best and cost-effective method for handling scale deposits that ensures production continuity. Inhibition through "threshold" scale inhibitor treatment is the most common method that is proven to prevent or reduce likely deposits. This paper examines the art of synthetic scale inhibitors, in particular, threshold scale inhibitors in oil and gas production. It discusses the chemistry of those inhibitors, inhibition mechanisms, treatment methods and key properties for their applications. It also highlights the chemistry of the synthetic routes often used to produce them in the laboratory and/or industry. Finally, it highlights the environmental concerns for the applicability of threshold scale inhibitors.
Exploring deep and ultradeep wells has rapidly become more significant to meet the global demand for oil and gas. The study of rheological and filtration-loss properties is essential to designing drilling muds and determining their performance under operational conditions. Rheological and filtration-loss properties of drilling muds were found to have a negative impact when exposed to elevated temperatures in the wells. In this study, an amphoteric polymer (abbreviated to PEX) was synthesized and characterized using a combination of analyses: FTIR, SEM, 13 CNMR, and TGA. The synthesized PEX was used as an additive in water-based drilling muds to improve rheological properties and reduce fluid loss at elevated temperatures (180−220 °C). The experimental results demonstrated that inclusion of an optimal concentration of PEX (0.3 wt %) into the drilling mud formulation increased the rheological properties by 62.3% and decreased the filtration loss by 63.5% at an aging temperature of 180 °C. Moreover, PEX was found to perform superbly compared to polyanionic cellulose (PAC-LV) and polyacrylamide (PAM), the widely used drilling mud additives. PEX not only improved the rheological properties and reduced the filtration loss behavior but also bolstered the thermostability of the drilling mud formulation. It was concluded that the rigidity and amphoteric nature of PEX accounted for the exceptional performance and temperature resistance for PEX-drilling mud formulations. Succinctly, PEX exhibits admirable properties in smart drilling mud formulations for drilling operations under high-temperature geothermal conditions. Moreover, in terms of rheological models, the Herschel−Bulkley model adequately described the rheological properties of all the studied drilling mud formulations.
Oily sludge is a major problem affecting the quality of oil fields and surrounding environment. Microbial fuel cell (MFC) technology is a simple way to treat the oily sludge while generating electricity. To investigate the electrochemical properties of such MFC and the characteristics of bacteria attached to anode, a single‐chamber MFC supplemented with oily sludge was constructed. The electrochemical results showed that the oily sludge is suitable for MFC operation, with a maximum output voltage of 299.13 mV and a maximum output power (Pmax) of 2,255.52 mW/m2. The cyclic voltammetry curve of MFC anode displayed an “S” shape, whereas the main peaks were at 0 and 0.1 V, indicating a strong redox reaction on the anode carbon felt. The limiting current was 0.08 A/cm2. The scanning electron microscopy (SEM) of the bacteria on the anode surface showed that most of bacteria displayed a rod‐shaped morphology, whereas the biological metagenomic classification sequencing showed that the predominant electricity‐producing bacteria were Proteiniciclasticum (15.83%) from Firmicutes and Pseudomonas (11.9%) from Gammaproteobacteria. MFC can effectively utilize the oily sludge to generate electricity at the same time, which provides a theoretical basis for the research of MFCs' pollution control and electricity production.
Hydraulic fracturing is one of the important methods to improve oil and gas production. The performance of the fracturing fluid directly affects the success of hydraulic fracturing. The traditional cross-linked polymer fracturing fluid can cause secondary damage to oil and gas reservoirs due to the poor flow-back of the fracturing fluid, and existing conventional cleaning fracturing fluids have poor performance in high temperature. Therefore, this paper has carried out research on novel sulfonate Gemini surfactant cleaning fracturing fluids. The rheological properties of a series of sulfonate Gemini surfactant (DSm-s-m) solutions at different temperatures and constant shear rate (170 s−1) were tested for optimizing the temperature-resistance and thickening properties of anionic Gemini surfactants in clean fracturing fluid. At the same time, the microstructures of solutions were investigated by scanning electron microscope (SEM). The experimental results showed that the viscosity of the sulfonate Gemini surfactant solution varied with the spacer group and the hydrophobic chain at 65 °C and 170 s−1, wherein DS18-3-18 had excellent viscosity-increasing properties. Furthermore, the microstructure of 4 wt.% DS18-3-18 solution demonstrated that DS18-3-18 self-assembled into dense layered micelles, and the micelles intertwined with each other to form the network structure, promoting the increase in solution viscosity. Adding nano-MgO can increase the temperature-resistance of 4 wt.% DS18-3-18 solution, which indicated that the rod-like and close-packed layered micelles were beneficial to the improvement of the temperature-resistance and thickening performances of the DS18-3-18 solution. DS18-3-18 was not only easy to formulate, but also stable in all aspects. Due to its low molecular weight, the damage to the formation was close to zero and the insoluble residue was almost zero because of the absence of breaker, so it could be used as a thickener for clean fracturing fluids in tight reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.