The regulation of insulin receptor (IR) tyrosine (tyr) phosphorylation is a key step in the control of insulin signaling. Augmented IR tyr dephosphorylation by protein tyrosine phosphatases (PTPs) may contribute to insulin resistance. To investigate this possibility in hyperglycemia-induced insulin resistance, primary cultured rat adipocytes were rendered insulin-resistant by chronic exposure (18 h) to 15 mmol/l glucose combined with 10 -7 mol/l insulin. Insulin-resistant adipocytes showed a decrease in insulin sensitivity and a maximum response of 2-deoxyglucose uptake, which was associated with a decrease in maximum insulin-stimulated IR tyr phosphorylation in situ. To assess tyr dephosphorylation, IRs of insulin-stimulated permeabilized adipocytes were labeled with [␥-
in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.