The laser processing method has proven to produce surfaces while ensuring a low secondary electron yield of oxygen-free high-conductivity copper (OFHC) samples, making it attractive for electron cloud mitigation in next-generation particle accelerators and neutron tubes. In this work, the laser processing method is proposed to OFHC targets for the first time, aiming to reduce the secondary electrons in the neutron tube. The secondary electron yields (SEYs) and the thermal conductivities of Ti film and quaternary Ti–Zr–V–Hf films with unprocessed and laser processed OFHC substrates are investigated. Our results highlight that the thermal conductivity of Ti film with laser processed OFHC substrates is in proximity to the cleaned bare OFHC sample, especially at high temperatures. Moreover, the SEY of coated OFHC substrates are higher than that of coated laser processed substrates, which indicates the better secondary electron suppression capability of coated laser processed substrates. Therefore, the thermal conductivity and SEY results illustrate that the application of Ti and Ti–Zr–V–Hf coated laser processed OFHC can be considered to improve the neutron yield in neutron tubes in the future.
Secondary electron emission (SEE) inhibition and vacuum instability are two important issues in accelerators that may induce multiple effects in accelerators, such as power loss and beam lifetime reduction. In order to mitigate SEE and maintain high vacuum simultaneously, open-cell copper metal foam (OCMF) substrates with Ti-Zr-V-Hf non-evaporable getter (NEG) coatings are first proposed, and the properties of surface morphology, surface chemistry and secondary electron yield (SEY) were analyzed for the first time. According to the experimental results tested at 25 °C, the maximum SEY (δmax) of OCMF before and after Ti-Zr-V-Hf NEG film deposition were 1.25 and 1.22, respectively. The XPS spectra indicated chemical state changes of the metal elements (Ti, Zr, V and Hf) of the Ti-Zr-V-Hf NEG films after heating, suggesting that the NEG films can be activated after heating and used as getter pumps.
The electron beam, one of the most effective approaches to simulate the irradiation effects of powerful pulsed X-ray in the laboratory, plays an important role in simulating the thermodynamic effects of powerful pulsed X-ray. This paper studies the thermodynamics equivalence between multienergy composite spectrum electron beam and blackbody spectrum X-ray, which is helpful to quickly determine the experimental parameters in the simulation experiment. The experimental data of electron beam are extrapolated by numerical calculation, to increase the range of energy flux. Through calculating the blow-off impulse of blackbody spectrum X-ray irradiation, we obtained the curve of X-ray blow-off impulse varying with energy flux, and then found two categories of equivalent relations—equal-energy flux and equal-impulse—by analyzing the calculation results of electron beam and X-ray blow-off impulse. Based on such relations, we could directly or indirectly obtain the results of blackbody spectrum X-ray irradiation blow-off impulse via electron beam experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.