We demonstrate an erbium-doped fiber laser passively mode-locked by a multilayer molybdenum disulfide (MoS(2)) saturable absorber (SA). The multilayer MoS(2) is prepared by the chemical vapor deposition (CVD) method and transferred onto the end-face of a fiber connector. Taking advantage of the excellent saturable absorption of the fabricated MoS(2)-based SA, stable mode locking is obtained at a pump threshold of 31 mW. Resultant output soliton pulses have central wavelength, spectral width, pulse duration, and repetition rate of 1568.9 nm, 2.6 nm, 1.28 ps, and 8.288 MHz, respectively. The experimental results show that multilayer MoS(2) is a promising material for ultrafast laser systems.
We demonstrate ultrafast optical modulation using a single 1-μm-diameter graphene-decorated microfiber, which is fabricated with a convenient and controllable evanescent-field-induced deposition method. Benefitting from the significantly enhanced light-graphene interaction of the subwavelength transvers dimension of the microfiber and accumulation of the saturable absorption of the piled graphene flakes, the microfiber shows nonlinear saturable absorption with a peak power threshold down to 1.75 W (60 MW/cm(2)), with a measured response time of about 3.5 ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.