Horns, also known as headgear, are a unique structure of ruminants. As ruminants are globally distributed, the study of horn formation is critical not only for increasing our understanding of natural and sexual selection but also for the breeding of polled sheep breeds to facilitate modern sheep farming. Despite this, a significant number of the underlying genetic pathways in sheep horn remain unclear. In this study, to clarify the gene expression profile of horn buds and investigate the key genes in horn bud formation, RNA-sequencing (RNA-seq) technology was utilized to investigate differential gene expression in the horn buds and adjacent forehead skin of Altay sheep fetuses. There were only 68 differentially expressed genes (DEGs) identified, consisting of 58 up-regulated genes and 10 down-regulated genes. RXFP2 was differentially up-regulated in the horn buds and had the highest significance (p-value = 7.42 × 10−14). In addition, 32 DEGs were horn-related genes identified in previous studies, such as RXFP2, FOXL2, SFRP4, SFRP2, KRT1, KRT10, WNT7B, and WNT3. Further, Gene Ontology (GO) analysis showed that the DEGs were mainly enriched with regard to growth, development, and cell differentiation. Pathway analysis revealed that the Wnt signaling pathway may be responsible for horn development. Further, through combining the protein–protein interaction networks of the DEGs, it was found that the top five hub genes, namely, ACAN, SFRP2, SFRP4, WNT3, and WNT7B, were also associated with horn development. Our results suggest that only a few key genes, including RXFP2, are involved in bud formation. This study not only validates the expression of candidate genes identified at the transcriptome level in previous studies but also provides new possible marker genes for horn development, which may promote our understanding of the genetic mechanisms of horn formation.
In the original publication [1], there were mistakes in the order of the references, which were as follows: [...]
Bactrian camels (Camelus bactrianus) are highly adapted to the desert and semi-desert environments of Asia and developed unique physiological adaptations to cold, heat, drought, and nutrient-poor conditions. These animals are an ideal model for studying desert adaptation. However, the transcriptome of different Bactrian camel tissues has not been profiled. This study performed a comprehensive transcriptome analysis of nine fetal and adult tissues. A total of 20,417 coding genes were identified, and 2.4 billion reads were generated. Gene expression and functional analyses revealed that approximately 50% of the identified genes were ubiquitously expressed, and one-third were tissue-elevated genes, which were enriched in pathways related to the biological functions of the corresponding tissue. Weighted gene co-expressed network analysis (WGCNA) identified four modules—fat metabolism, water balance, immunity, and digestion—and several hub genes, including APOA1, TMEM174, CXCL12, and MYL9. The analysis of differentially expressed genes (DEGs) between fetal and adult tissues revealed that downregulated genes were enriched in tissue development, whereas upregulated genes were enriched in biological function in adult camels. DEGs in the hump were enriched in immune-related pathways, suggesting that this tissue is involved in immunity. This study is the first to generate a transcriptome atlas of major tissues in Bactrian camels and explores the genes potentially involved in the adaptation to desert environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.