The 0.65(NBT-BKT)–0.35SBT ceramic possesses an ultra-high recoverable energy storage density (Wrec ∼ 4.06 J cm−3) and maintains a relatively high efficiency (η = ∼87.3%).
The development of new generation dielectric materials toward capacitive energy storage has been driven by the rise of high-power applications such as electric vehicles, aircraft, and pulsed power systems. Here we demonstrate remarkable improvements in the energy density and charge-discharge efficiency of poly(vinylidene fluoride) (PVDF) upon the incorporation of core-satellite structures, namely NaNbO3(NN)@polydopamine (PDA)@Ag nanowires. As compared to the NN NWs/PVDF and NN@PDA NWs/PVDF nanocomposites, the NN@PDA@Ag NWs/PVDF nanocomposites exhibit greatly enhanced energy density and significantly suppressed energy loss. As a result, the NN@PDA@Ag NWs/PVDF nanocomposite films with optimized filler content exhibit an excellent discharge energy density of 16.04 J cm-3 at 485 MV m-1, and maintain a high discharge efficiency of 62.8%. Moreover, the corresponding nanocomposite films exhibit a superior power density of 2.1 MW cm-3 and ultra-fast discharge speed of 153 ns. Ultimately, the excellent dielectric and capacitive properties of the polymer nanocomposites could pave the way for widespread applications in modern electronics and power modules.
Application of a continuum damage mechanics formulation rests on the ease with which the material constants involved in the formulation can be determined. For an initially linear elastic material, the changes in elastic constants induced by damage depend on certain damage related material constants that are commonly determined by experiments in addition to those required to determine the initial properties. This additional experimental task can render the continuum damage mechanics theory less attractive. The present paper will only deal with those associated with damage representation. We propose here a procedure for analytically determining seven out of eight damage related material constants for unidirectional composites assumed initially transversely isotropic and containing a parallel array of matrix cracks along fibres. The remaining constant can be determined experimentally or by a numerical experiment proposed here for the purpose. The analytical expressions derived are in terms of initial elasticity constants of a unidirectional composite and are verified for their accuracy by numerical experiments. Since a unidirectional composite forms a building block in composite laminates, the results obtained here can be naturally used for damage in laminates.
The extracellular matrix (ECM) is a complex, three-dimensional (3D) framework of macromolecules, which regulate cell bioactivities via chemical and physical properties. The ECM's physical properties, including stiffness and physical constraints to cell shape, regulate actomyosin cytoskeleton contractions, which induce signaling cascades influencing gene expressions and cell fates. Engineering such bioactivities, a.k.a., mechanotransduction, have been mainly achieved by two-dimensional (2D) platforms, such as micro-patterns. These platforms cause cytoskeletal contractions with apico-basal polarity and could induce mechanotransduction that are unnatural to
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.