Volatile organic compounds (VOCs) play an important role in plant ecology and can be useful in pest management. This work characterises, for the first time, the VOC emissions of six industrial hemp (Cannabis sativa L.) cultivars grown in New Zealand: CFX-2, CRS-1, Ferimon 12, Katani, Futura 75, and Finola. Volatiles emitted from flowers and foliage of eight-week-old plants were collected using a dynamic headspace sampling method and analysed using gas chromatography coupled to mass spectrometry. We assessed the effect of cultivar, sex (monoecious, male, and female), and site (i.e., two sites differing in soil types, maintained under irrigation and rain-fed conditions) on VOC emissions. Thirty-five volatile compounds were tentatively identified from the headspace samples of hemp plants, but none of the cultivars emitted all 35 compounds. β-Myrcene was the most abundant compound in most cultivars. Overall, there was a significant effect of sex, and the interaction of sex and cultivar on the volatile profiles, but no effect of site. Female plants typically emitted more volatiles than their male counterparts and monoecious cultivars. The main compounds driving the difference between cultivars and sexes were (Z)- and (E)-β-ocimene. We hypothesize that differences in emission emerged as a defence strategy to protect costly female flowers from herbivores (since C. sativa is wind pollinated), but this hypothesis needs further testing. We recommend additional studies exploring how biotic and abiotic factors influence hemp VOC emissions, changes in VOCs throughout the crop cycle, the role of VOCs in plant-insect interactions and their use in pest management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.