A chimeric simian-human immunodeficiency virus (SHIV-4) containing the tat, rev, vpu, and env genes of HIV type 1 (HIV-1) in a genetic background of SIVmac239 was used to develop an animal model in which a primate lentivirus expressing the HIV-1 envelope glycoprotein caused acquired immune deficiency syndrome (AIDS) in macaques. An SHIV-infected pig-tailed macaque that died from AIDS at 24 weeks postinoculation experienced two waves of viremia: one extending from weeks 2-8 and the second extending from week 18 until death. Virus (SHIVKU-1) isolated during the first wave was neutralized by antibodies appearing at the end of the first viremic phase, but the virus (SHIVKU-1b) isolated during the second viremic phase was not neutralized by these antibodies. Inoculation of SHIVKU-1b into 4 pig-tailed macaques resulted in severe CD4(+) T cell loss by 2 weeks postinoculation, and all 4 macaques died from AIDS at 23-34 weeks postinoculation. Because this virus had a neutralization-resistant phenotype, we sequenced the env gene and compared these sequences with those of the env gene of SHIVKU-1 and parental SHIV-4. With reference to SHIV-4, SHIVKU-1b had 18 and 6 consensus amino acid substitutions in the gp120 and gp41 regions of Env, respectively. These compared with 10 and 3 amino acid substitutions in the gp120 and gp41 regions of SHIVKU-1. Our data suggested that SHIVKU-1 and SHIVKU-1b probably evolved from a common ancestor but that SHIVKU-1b did not evolve from SHIVKU-1. A chimeric virus, SHIVKU-1bMC17, constructed with the consensus env from the SHIVKU-1b on a background of SHIV-4, confirmed that amino acid substitutions in Env were responsible for the neutralization-resistant phenotype. These results are consistent with the hypothesis that neutralizing antibodies induced by SHIVKU-1 in pig-tailed macaque resulted in the selection of a neutralization-resistant virus that was responsible for the second wave of viremia.
These data suggest that T-cell responses are influenced by the choice of anti-lipid agent and suggest that a prospective comparison is needed to determine the clinical relevance of these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.