COVID-19 pandemic has hit the world with such a force that the world's leading economies are finding it challenging to come out of it. Countries with the best medical facilities are even cannot handle the increasing number of cases and fatalities. This disease causes significant damage to the lungs and respiratory system of humans, leading to their death. Computed tomography (CT) images of the respiratory system are analyzed in the proposed work to classify the infected people with non-infected people. Deep learning binary classification algorithms have been applied, which have shown an accuracy of 86.9% on 746 CT images of chest having COVID-19 related symptoms.
Malaria comes under one of the dangerous diseases in many countries. It is the primary reason for most of the causalities across the world. It is presently rated as a significant cause of the high mortality rate worldwide compared with other diseases that can be reduced significantly by its earlier detection. Therefore, to facilitate the early detection/diagnosis of malaria to reduce the mortality rate, an automated computational method is required with a high accuracy rate. This study is a solid starting point for researchers who want to look into automated blood smear analysis to detect malaria. In this paper, a comprehensive review of different computer-assisted techniques has been outlined as follows: (i) acquisition of image dataset, (ii) preprocessing, (iii) segmentation of RBC, and (iv) feature extraction and selection, and (v) classification for the detection of malaria parasites using blood smear images. This study will be helpful for: (i) researchers can inspect and improve the existing computational methods for early diagnosis of malaria with a high accuracy rate that may further reduce the interobserver and intra-observer variations; (ii) microbiologists to take the second opinion from the automated computational methods for effective diagnosis of malaria; and (iii) finally, several issues remain addressed, and future work has also been discussed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.