The traditional thermal gravimetric analyzer (TGA) has a noticeable thermal lag effect, which restricts the heating rate, while the micro-electro-mechanical system thermal gravimetric analyzer (MEMS TGA) utilizes a resonant cantilever beam structure with high mass sensitivity, on-chip heating, and a small heating area, resulting in no thermal lag effect and a fast heating rate. To achieve high-speed temperature control for MEMS TGA, this study proposes a dual fuzzy proportional-integral-derivative (PID) control method. The fuzzy control adjusts the PID parameters in real-time to minimize overshoot while effectively addressing system nonlinearities. Simulation and actual testing results indicate that this temperature control method has a faster response speed and less overshoot compared to traditional PID control, significantly improving the heating performance of MEMS TGA.
Resonant microcantilevers have the advantages of ultra-high heating rates, analysis speed, ultra-low power consumption, temperature programming, and trace sample analysis when applied in TGA. However, the current single-channel testing system for resonant microcantilevers can only detect one sample at a time, and need two program heating tests to obtain the thermogravimetric curve of a sample. In many cases, it is desirable to obtain the thermogravimetric curve of a sample with a single-program heating test and to simultaneously detect multiple microcantilevers for testing multiple samples. To address this issue, this paper proposes a dual-channel testing method, where a microcantilever is used as a control group and another microcantilever is used as an experimental group, to obtain the thermal weight curve of the sample in a single program temperature ramp test. With the help of the LabVIEW’s convenient parallel running method, the functionality of simultaneously detecting two microcantilevers is achieved. Experimental validation showed that this dual-channel testing system can obtain the thermogravimetric curve of a sample with a single program heating test and detect two types of samples simultaneously.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.