The microbiome-gut-brain axis, or the various interactions between the gut microbiome and the brain, has been of recent interest in the context of precision medicine research for a variety of disease states. Persons living with human immunodeficiency virus (PLWH) experience higher degrees of neurocognitive decline than the general population, correlating with a disruption of the normal gut microbiome composition (i.e. dysbiosis). While the nature of this correlation remains to be determined, there is the potential that the microbiome-gut-brain axis contributes to the progression of this disease. Previous research has established that the pathology associated with HIV induces alterations in the composition of gut microbiome, including a shift from
Bacteroides
to
Prevotella
dominance, and compromises gut barrier integrity, which may promote microbial translocation and consequent systemic inflammation and exacerbation of neuroinflammation. Further, though the use of antiretroviral therapy has been found to partially counteract HIV-related dysbiosis, it may also induce its own dysbiosis patterns, presenting a unique challenge for this research.
More recent research has suggested the gut microbiome as a target for therapeutic interventions to improve symptoms associated with a variety of disease states, including HIV. Early findings are promising and warrant further research regarding the gut microbiome as a potential modifiable factor to improve health outcomes for PLWH. This review will discuss the current knowledge concerning the neuropathogenesis of HIV in the brain, role of the gut microbiome in neuroinflammation, and the relationship between HIV-status and the gut microbiome, followed by a conclusion that synthesizes this information within the context of the microbiome-gut-brain axis among PLWH. This review will also highlight the limitations of existing studies and propose future directions of this research.
Molecular HIV surveillance is a promising public health strategy for curbing the HIV epidemic. Clustering technologies used by health departments to date are limited in their ability to infer/forecast cluster growth trajectories. Resolution of the spatiotemporal dynamics of clusters, through phylodynamic and phylogeographic modelling, is one potential strategy to develop a forecasting tool; however, the projected utility of this approach needs assessment. Prior to incorporating novel phylodynamic-based molecular surveillance tools, we sought to identify possible issues related to their feasibility, acceptability, interpretation, and utility. Qualitative data were collected via focus groups among field experts (n = 17, 52.9% female) using semi-structured, open-ended questions. Data were coded using an iterative process, first through the development of provisional themes and subthemes, followed by independent line-by-line coding by two coders. Most participants routinely used molecular methods for HIV surveillance. All agreed that linking molecular sequences to epidemiological data is important for improving HIV surveillance. We found that, in addition to methodological challenges, a variety of implementation barriers are expected in relation to the uptake of phylodynamic methods for HIV surveillance. The participants identified several opportunities to enhance current methods, as well as increase the usability and utility of promising works-in-progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.