Working memory is an executive memory process that allows transitional information to be held and manipulated temporarily in memory stores before being forgotten or encoded into long-term memory. Working memory is necessary for everyday decision-making and problem solving, making it a fundamental process in the daily lives of older adults. Working memory relies heavily on frontal lobe structures and is known to decline with age. The current study aimed to determine the neural correlates of decreased working memory performance in the frontal lobes by comparing cortical thickness and cortical surface area from two demographically matched groups of healthy older adults, free from cognitive impairment, with high versus low N-Back working memory performance (N = 56; average age = 70.29 ± 10.64). High-resolution structural T1-weighted images (1 mm isotropic voxels) were obtained on a 3T Philips MRI scanner. When compared to high performers, low performers exhibited significantly decreased cortical surface area in three frontal lobe regions lateralized to the right hemisphere: medial orbital frontal gyrus, inferior frontal gyrus, and superior frontal gyrus (FDR p < 0.05). There were no significant differences in cortical thickness between groups, a proxy for neurodegenerative tissue loss. Our results suggest that decreases in cortical surface area (a proxy for brain structural integrity) in right frontal regions may underlie age-related decline of working memory function.
Background The acute consumption of excessive quantities of alcohol causes well-recognized neurophysiological and cognitive alterations. As people reach advanced age, they are more prone to cognitive decline. To date, the interaction of current heavy alcohol (ETOH) consumption and aging remain unclear. The current paper tested the hypothesis that negative consequences of current heavy alcohol consumption on neurocognitive function are worse with advanced age. Further, we evaluated the relations between lifetime history of alcohol dependence and neurocognitive function Methods Sixty-six participants underwent a comprehensive neurocognitive battery. Current heavy ETOH drinkers were classified using NIAAA criteria (ETOH Heavy, n = 21) based on the Timeline follow-back and a structured clinical interview and compared to non-drinkers, and moderate drinkers (ETOH Low, n = 45). Fifty-three-point-three percent of the total population had a lifetime history of alcohol dependence. Neurocognitive data were grouped and analyzed relative to global and domain scores assessing: global cognitive function, attention/executive function, learning, memory, motor function, verbal function, and speed of processing. Results Heavy current ETOH consumption in older adults was associated with poorer global cognitive function, learning, memory, and motor function (p’s<.05). Furthermore, lifetime history of alcohol dependence was associated with poorer function in the same neurocognitive domains, in addition to the attention/executive domain, irrespective of age (p’s<.05). Conclusions These data suggest that while heavy current alcohol consumption is associated with significant impairment in a number of neurocognitive domains, history of alcohol dependence, even in the absence of heavy current alcohol use, is associated with lasting negative consequences for neurocognitive function.
Chronic traumatic encephalopathy (CTE) is a neuropathologically defined disease reportedly linked to a history of repetitive brain trauma. As such, retired collision sport athletes are likely at heightened risk for developing CTE. Researchers have described distinct pathological features of CTE as well a wide range of clinical symptom presentations, recently termed traumatic encephalopathy syndrome (TES). These clinical symptoms are highly variable, non-specific to individuals described as having CTE pathology in case reports, and are often associated with many other factors. This review describes the cognitive, emotional, and behavioral changes associated with 1) developmental and demographic factors, 2) neurodevelopmental disorders, 3) normal aging, 4) adjusting to retirement, 5) drug and alcohol abuse, 6) surgeries and anesthesia, and 7) sleep difficulties, as well as the relationship between these factors and risk for developing dementia-related neurodegenerative disease. We discuss why some professional athletes may be particularly susceptible to many of these effects and the importance of choosing appropriate controls groups when designing research protocols. We conclude that these factors should be considered as modifiers predominantly of the clinical outcomes associated with repetitive brain trauma within a broader biopsychosocial framework when interpreting and attributing symptom development, though also note potential effects on neuropathological outcomes. Importantly, this could have significant treatment implications for improving quality of life.
Background Conventional transcranial direct current stimulation (tDCS) methods involve application of weak electrical current through electrodes encased in saline soaked sponges affixed to the head using elastic straps. In the absence of careful preparation, electrodes can drift from their original location over the course of a tDCS session. Objective The current paper investigates the influence of electrode drift on distribution of electric fields generated by conventional tDCS. Methods MRI-derived finite element models of electric fields produced by tDCS were used to investigate the influence of incremental drift in electrodes for two of the most common electrode montages used in the literature: M1/SO (motor to contralateral supraorbital) and F3/F4 (bilateral frontal). Based on these models, we extracted predicted current intensity from 20 representative structures in the brain. Results Results from separate RM-ANOVAs for M1/SO and F3/F4 montages demonstrated that 5% incremental drift in electrode position significantly changed the distribution of current delivered by tDCS to the human brain (F’s > 8.6, p’s<.001). Pairwise comparisons demonstrated that as little as 5% drift was able to produce significant differences in current intensity in structures distributed across the brain (p’s< .03). Conclusions Drift in electrode position during a session of tDCS produces significant alteration in the intensity of stimulation delivered to the brain. Elimination of this source of variability will facilitate replication and interpretation of tDCS findings. Furthermore, measurement and statistically accounting for drift may prove important for better characterizing the effects of tDCS on the human brain and behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.