The North American Project to Evaluate Soil Health Measurements was initiated with the objective to identify widely applicable soil health measurements for evaluation of agricultural management practices intended to improve soil health. More than 20 indicators were chosen for assessment across 120 long‐term agricultural research sites spanning from north‐central Canada to southern Mexico. The indicators being evaluated include common standard measures of soil, but also newer techniques of visible and near‐infrared reflectance spectroscopy, a smart phone app, and metagenomics. The aim of using consistent sampling and analytical protocols across selected sites was to provide a database of soil health indicator results that can be used to better understand how land use and management has affected the condition of soil ecosystem provisioning for agricultural biomass production and water resources, as well as nutrient and C cycling. The objective of this paper is to provide documentation of the overall design, and methods being employed to identify soil health indicators sensitive across agricultural management practices, pedologies, and geographies.
Currently accepted pedotransfer functions show negligible effect of managementinduced changes to soil organic carbon (SOC) on plant available water holding capacity (θ AWHC ), while some studies show the ability to substantially increase θ AWHC through management. The Soil Health Institute's North America Project to Evaluate Soil Health Measurements measured water content at field capacity using intact soil cores across 124 long-term research sites that contained increases in SOC as a result of management treatments such as reduced tillage and cover cropping. Pedotransfer functions were created for volumetric water content at field capacity (θ FC ) and permanent wilting point (θ PWP ). New pedotransfer functions had predictions of θ AWHC that were similarly accurate compared with Saxton and Rawls when tested on samples from the National Soil Characterization database. Further, the new pedotransfer functions showed substantial effects of soil calcareousness and SOC on θ AWHC . For an increase in SOC of 10 g kg -1 (1%) in noncalcareous soils, an average increase in θ AWHC of 3.0 mm 100 mm -1 soil (0.03 m 3 m -3 ) on average across all soil texture classes was found. This SOC related increase in θ AWHC is about double previous estimates. Calcareous soils had an increase in θ AWHC of 1.2 mm 100 mm -1 soil associated with a 10 g kg -1 increase in SOC, across all soil texture classes. New equations can aid in quantifying benefits of soil management practices that increase SOC and can be used to model the effect of changes in management on drought resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.