The objective of this study is to evaluate electrocardiography (ECG)-synchronized pulsatile flow under varying heart rates and different atrial and ventricular arrhythmias in a simulated extracorporeal life support (ECLS) system. The ECLS circuit consisted of an i-cor diagonal pump and console, an iLA membrane ventilator, and an 18 Fr arterial cannula. The circuit was primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). An ECG simulator was used to trigger pulsatile flow and to generate selected cardiac rhythms. All trials were conducted at a flow rate of 2.5 L/min at room temperature for normal sinus rhythm at 45-180 bpm under non-pulsatile and pulsatile modes. Various atrial and ventricular arrhythmias were also tested. Real-time pressure and flow data were recorded using a custom-based data acquisition system. The energy equivalent pressure (EEP) generated by pulsatile flow was always higher than the mean pressure. No surplus hemodynamic energy (SHE) was recorded under non-pulsatile mode. Under pulsatile mode, SHE levels increased with increasing heart rates (45-120 bpm). SHE levels under a 1:2 assist ratio were higher than the 1:1 and 1:3 assist ratios with a heart rate of 180 bpm. A similar trend was recorded for total hemodynamic energy levels. There was no statistical difference between the two perfusion modes with regards to pressure drops across the ECLS circuit. The main resistance and energy loss came from the arterial cannula. The i-cor console successfully tracked electrocardiographic signals of 12 atrial and ventricular arrhythmias. Our results demonstrated that the i-cor pulsatile ECLS system can be synchronized with a normal heart rate or with various atrial/ventricular arrhythmias. Further in vivo studies are warranted to confirm our findings.
The objective of this study was to evaluate an alternative neonatal extracorporeal life support (ECLS) circuit with a RotaFlow centrifugal pump and Better-Bladder (BB) for hemodynamic performance and gaseous microemboli (GME) capture in a simulated neonatal ECLS system. The circuit consisted of a Maquet RotaFlow centrifugal pump, a Quadrox-iD Pediatric diffusion membrane oxygenator, 8 Fr arterial cannula, and 10 Fr venous cannula. A "Y" connector was inserted into the venous line to allow for comparison between BB and no BB. The circuit and pseudopatient were primed with lactated Ringer's solution and packed human red blood cells (hematocrit 35%). All hemodynamic trials were conducted at flow rates ranging from 100 to 600 mL/min at 36°C. Real-time pressure and flow data were recorded using a data acquisition system. For GME testing, 0.5 cc of air was injected via syringe into the venous line. GME were detected and characterized with or without the BB using the Emboli Detection and Classification Quantifier (EDAC) System. Trials were conducted at flow rates ranging from 200 to 500 mL/min. The hemodynamic energy data showed that up to 75.2% of the total hemodynamic energy was lost from the circuit. The greatest pressure drops occurred across the arterial cannula and increased with increasing flow rate from 10.1 mm Hg at 100 mL/min to 114.3 mm Hg at 600 mL/min. The EDAC results showed that the BB trapped a significant amount of the GME in the circuit. When the bladder was removed, GME passed through the pump head and the oxygenator to the arterial line. This study showed that a RotaFlow centrifugal pump combined with a BB can help to significantly decrease the number of GME in a neonatal ECLS circuit. Even with this optimized alternative circuit, a large percentage of the total hemodynamic energy was lost. The arterial cannula was the main source of resistance in the circuit.
The objective of this study is to evaluate the impact of an open or closed recirculation line on flow rate, circuit pressure, and hemodynamic energy transmission in simulated neonatal extracorporeal life support (ECLS) systems. The two neonatal ECLS circuits consisted of a Maquet HL20 roller pump (RP group) or a RotaFlow centrifugal pump (CP group), Quadrox-iD Pediatric oxygenator, and Biomedicus arterial and venous cannulae (8 Fr and 10 Fr) primed with lactated Ringer's solution and packed red blood cells (hematocrit 35%). Trials were conducted at flow rates ranging from 200 to 600 mL/min (200 mL/min increments) with a closed or open recirculation line at 36°C. Real-time pressure and flow data were recorded using a custom-based data acquisition system. In the RP group, the preoxygenator flow did not change when the recirculation line was open while the prearterial cannula flow decreased by 15.7-20.0% (P < 0.01). Circuit pressure, total circuit pressure drop, and hemodynamic energy delivered to patients also decreased (P < 0.01). In the CP group, the prearterial cannula flow did not change while preoxygenator flow increased by 13.6-18.8% (P < 0.01). Circuit pressure drop and hemodynamic energy transmission remained the same. The results showed that the shunt of an open recirculation line could decrease perfusion flow in patients in the ECLS circuit using a roller pump, but did not change perfusion flow in the circuit using a centrifugal pump. An additional flow sensor is needed to monitor perfusion flow in patients if any shunts exist in the ECLS circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.