Although hundreds if not thousands of quantitative trait loci (QTL) have been described for a wide variety of complex traits, only a very small number of these QTLs have been reduced to quantitative trait genes (QTGs) and quantitative trait nucleotides (QTNs). A strategy, Multiple Cross Mapping (MCM), is described for detecting QTGs and QTNs that is based on leveraging the information contained within the haplotype structure of the mouse genome. As described in the current report, the strategy utilizes the six F(2) intercrosses that can be formed from the C57BL/6J (B6), DBA/2J (D2), BALB/cJ (C), and LP/J (LP) inbred mouse strains. Focusing on the phenotype of basal locomotor activity, it was found that in all three B6 intercrosses, a QTL was detected on distal Chromosome (Chr) 1; no QTL was detected in the other three intercrosses, and thus, it was assumed that at the QTL, the C, D2, and LP strains had functionally identical alleles. These intercross data were used to form a simple algorithm for interrogating microsatellite, single nucleotide polymorphism (SNP), brain gene expression, and sequence databases. The results obtained point to Kcnj9 (which has a markedly lower expression in the B6 strain) as being the likely QTG. Further, it is suggested that the lower expression in the B6 strain results from a polymorphism in the 5'-UTR that disrupts the binding of at least three transcription factors. Overall, the method described should be widely applicable to the analysis of QTLs.
This study examines the use of multiple cross mapping (MCM) to reduce the interval for an ethanol response QTL on mouse chromosome 1. The phenotype is the acute locomotor response to a 1.5-g/kg i.p. dose of ethanol. The MCM panel consisted of the six unique intercrosses that can be obtained from the C57BL/6J (B6), DBA/2J (D2), BALB/cJ (C) and LP/J (LP) inbred mouse strains (N Ն 600/cross). Ethanol response QTL were detected only with the B6xD2 and B6xC intercrosses. For both crosses, the D2 and C alleles were dominant and decreased ethanol response. The QTL information was used to develop an algorithm for sorting and editing the chromosome 1 Mit microsatellite marker set (http://www.jax.org). This process yielded a cluster of markers between 82 and 85 cM (MGI). Evidence that the QTL was localized in or near this interval was obtained by the analysis of a sample (n Ω 550) of advanced cross heterogenous stock animals. In addition, it was observed that one of the BXD recombinant inbred strains (BXD-32) had a recombination in the interval of interest which produced the expected change in behavior. Overall, the data obtained suggest that the information available within existing genetic maps coupled with MCM data can be used to reduce the QTL interval. In addition, the MCM data set can be used to interrogate gene expression data to estimate which polymorphisms within the interval of interest are relevant to the QTL.
We have completed whole-genome scans for quantitative trait loci (QTLs) associated with acute ethanol-induced activation in the six F(2) intercrosses that can be formed from the C57BL/6J (B6), DBA/2J (D2) , BALB/cJ (C), and LP/J (LP) inbred strains. The goal was to test the hypothesis that given the relatively simple structure of the laboratory mouse genome, the same QTLs will be detected in multiple crosses which in turn will provide support for the strategy of multiple-cross mapping (MCM). QTLs with LOD scores greater than 4 were detected on Chrs 1, 2, 3, 8, 9, 13, 14, and 16. Only for the QTL on distal Chr 1 was there convincing evidence that the same or at least a very similar QTL was detected in multiple crosses. We also mapped the Chr 2 QTL directly in heterogeneous stock (HS) animals derived from the four inbred strains. At G(19) the QTL was mapped to an approximately 3-Mbp interval and this interval was associated with a haplotype block with a largely biallelic structure: B6-L:C-D2. We conclude that mapping in HS animals not only provides significantly greater QTL resolution, at least in some cases it provides significantly more information about the QTL haplotype structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.