Gastroesophageal reflux disease is the most common malady of the esophagus, affecting 7% of the United States population. Histological assessment demonstrates classic inflammatory mechanisms including selective leukocyte recruitment and hemorrhage, suggesting a prominent role for the microvasculature. We isolated and characterized human esophageal microvascular endothelial cells (EC) (HEMEC), examined inflammatory activation in response to cytokines, LPS, and acidic pH exposure, and identified signaling pathways that underlie activation. HEMEC displayed characteristic morphological and phenotypic features including acetylated LDL uptake. TNF-alpha/LPS activation of HEMEC resulted in upregulation of the cell adhesion molecules (CAM) ICAM-1, VCAM-1, E-selectin, and mucosal addressin CAM-1 (MAdCAM-1), increased IL-8 production, and enhanced leukocyte binding. Both acid and TNF-alpha/LPS activation lead to activation of SAPK/JNK in HEMEC that was linked to VCAM-1 expression and U-937 leukocyte adhesion. Expression of constitutive inducible nitric oxide synthase in HEMEC was in marked contrast to intestinal microvascular endothelial cells. In this study, we demonstrate that HEMECs are phenotypically and functionally distinct from lower gut-derived endothelial cells and will facilitate understanding of inflammatory mechanisms in esophageal inflammation.
Dysregulation of gallbladder ion and water absorption and/or secretion has been linked to cholesterol crystal and gallstone formation. We have recently demonstrated that obese, leptin-deficient (Lep(ob)) mice have enlarged gallbladder volumes and decreased gallbladder contractility and that leptin administration to these mice normalizes gallbladder function. However, the effect of leptin on gallbladder absorption/secretion is not known. Therefore, we sought to determine whether leptin would alter the expression of genes involved in water and ion transport across the gallbladder epithelium. Affymetrix oligonucleotide microarrays representing 39,000 transcripts were used to compare gallbladder gene-expression profiles from 12-wk-old control saline-treated Lep(ob) and from leptin-treated Lep(ob) female mice. Leptin administration to Lep(ob) mice decreased gallbladder volume, bile sodium concentration, and pH. Leptin repletion upregulated the expression of aquaporin 1 water channel by 1.3-fold and downregulated aquaporin 4 by 2.3-fold. A number of genes involved in sodium transport were also influenced by leptin replacement. Epithelial sodium channel-alpha and sodium hydrogen exchangers 1 and 3 were moderately downregulated by 2.0-, 1.6-, and 1.3-fold, respectively. Carbonic anhydrase-IV, which plays a role in the acidification of bile, was upregulated 3.7-fold. In addition, a number of inflammatory cytokines that are known to influence gallbladder epithelial cell absorption and secretion were upregulated. Thus leptin, an adipocyte-derived cytokine involved with satiety and energy balance, influences gallbladder bile volume, sodium, and pH as well as multiple inflammatory cytokine genes and genes related to water, sodium, chloride, and bicarbonate transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.