Electrochemical CO2 reduction is an attractive option for storing renewable electricity and for the sustainable production of valuable chemicals and fuels. In this roadmap, we review recent progress in fundamental understanding, catalyst development, and in engineering and scale-up. We discuss the outstanding challenges towards commercialization of electrochemical CO2 reduction technology: energy efficiencies, selectivities, low current densities, and stability. We highlight the opportunities in establishing rigorous standards for benchmarking performance, advances in in operando characterization, the discovery of new materials towards high value products, the investigation of phenomena across multiple-length scales and the application of data science towards doing so. We hope that this collective perspective sparks new research activities that ultimately bring us a step closer towards establishing a low- or zero-emission carbon cycle.
Renewable fuel generation is essential for a low carbon footprint economy. Thus, over the last five decades, a significant effort has been dedicated towards increasing the performance of solar fuels generating devices. Specifically, the solar to hydrogen efficiency of photoelectrochemical cells has progressed steadily towards its fundamental limit, and the faradaic efficiency towards valuable products in CO2 reduction systems has increased dramatically. However, there are still numerous scientific and engineering challenges that must be overcame in order to turn solar fuels into a viable technology. At the electrode and device level, the conversion efficiency, stability and products selectivity must be increased significantly. Meanwhile, these performance metrics must be maintained when scaling up devices and systems while maintaining an acceptable cost and carbon footprint. This roadmap surveys different aspects of this endeavor: system benchmarking, device scaling, various approaches for photoelectrodes design, materials discovery, and catalysis. Each of the sections in the roadmap focuses on a single topic, discussing the state of the art, the key challenges and advancements required to meet them. The roadmap can be used as a guide for researchers and funding agencies highlighting the most pressing needs of the field.
Electrochemistry is an established discipline with modern frontiers spanning energy conversion and storage, neuroscience, and organic synthesis. In spite of the expanding opportunities for academic and industrial electrochemists, particularly in the growing energy-storage sector, rigorous training of electrochemists is generally lacking at academic institutions in the United States. In this perspective, we highlight the core concepts of electrochemistry and discuss ways in which it has been historically taught. We identify challenges faced when teaching inherently interdisciplinary electrochemical concepts and discuss how technology provides new tools for teaching, such as inexpensive electronics and open-source software, to help address these challenges. Finally, we outline example programs and discuss how new tools and approaches can be brought together to prepare scientists and engineers for careers in electrochemical technology where they can accelerate the research, development, and deployment of the clean energy technology essential to combat climate change in the coming decades.
This article describes new batch-fabricated, robust, and easyto-use scanning electrochemical microscopy (SECM) nanoelectrode probes with a characteristic dimension of about 50 nm. The resulting microscopy method, PeakForce SECM™, provides electrochemical images with sub-100-nm resolution, as well as simultaneously acquired topographical, electrical, and mechanical maps on the nanometerscale. Using Bruker's existing high-bandwidth electronics, PeakForce SECM also provides the capability for high-quality nanoelectrical imaging in liquid. This article describes several applications of this new PeakForce SECM capability that enable various types of multidisciplinary research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.