With the increasing popularity of location-aware social media applications, Point-of-Interest (POI) recommendation has recently been extensively studied. However, most of the existing studies explore from the users' perspective, namely recommending POIs for users. In contrast, we consider a new research problem of predicting users who will visit a given POI in a given future period. The challenge of the problem lies in the difficulty to effectively learn POI sequential transition and user preference, and integrate them for prediction. In this work, we propose a new latent representation model POI2Vec that is able to incorporate the geographical influence, which has been shown to be very important in modeling user mobility behavior. Note that existing representation models fail to incorporate the geographical influence. We further propose a method to jointly model the user preference and POI sequential transition influence for predicting potential visitors for a given POI. We conduct experiments on 2 real-world datasets to demonstrate the superiority of our proposed approach over the state-of-the-art algorithms for both next POI prediction and future user prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.