The relationship between sea surface temperature (SST) and tropical cyclone (TC) intensity change exhibits a strong dependence on the current TC intensity. Using western North Pacific TC observations from 1982 to 2018, a threshold SST (TSST) is identified as the SST required to maintain TC intensity. TSST increases with TC intensity, with TCs intensifying and weakening when SST is higher and lower than TSST, respectively. Across the dataset, mean TC intensity change is proportional to the difference between SST and TSST. This study also formulates an equation to quantify TC intensity change using SST and current TC intensity, which replicates 99.46% of the mean observed TC intensity changes. This equation could serve as an alternative to the linear regressionbased relationship between SST and TC intensity change that is widely used in statistical-dynamical intensity models, thereby improving intensity forecasts.
Sea surface temperature (SST) is an important element in studying the global ocean-atmospheric system, as well as its simulation and projection in climate models. In this study, we evaluate the simulation skill of the Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the climatological SST in the Asian Marginal Seas (AMS), known as the most rapidly warming region over the global ocean. The results show that the spatial patterns and seasonal variability of Asian Marginal Seas (AMS) climatological SST simulated by the CMIP6 models are generally in good agreement with the observations, but there are simulation biases in the values. In boreal winter, the simulated climatological SST tends to be overestimated in the Japan/East Sea and the East China Seas (ECSs) by up to 2°C, while being underestimated in the Sea of Okhotsk by up to 2°C. In boreal summer, the simulated climatological SSTs are overestimated in the Indonesian seas and western Arabian Sea, while being underestimated in the Sea of Okhotsk and the northern ECSs by 1.2–1.5 and 2°C, respectively. Furthermore, we calculate the projected sea surface warming trends in the AMS under different future scenarios in the CMIP6 models. The results show warming trends of 0.8–1.8, 1.7–3.4, and 3.8–6.5°C/century for the Shared Socio-Economic Pathway (SSP) of low- (global radiative forcing of 2.6 W/m² by the year 2100), medium- (global radiative forcing of 4.5 W/m² by 2100) and high-end (8.5 W/m² by 2100) pathways, respectively. In addition, the middle and high latitudes of the AMS are found to have faster warming trends than the low latitudes, with the most rapidly warming occurring in the Sea of Okhotsk, which is around 2 times larger than the global mean SST warming trend. The SST warming trends are relatively slow in the South China Sea and the Indonesian seas, roughly equal to the global mean SST warming trend.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.