Disordered speech recognition is a highly challenging task. The underlying neuro-motor conditions of people with speech disorders, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of speech required for system development. This paper investigates a set of data augmentation techniques for disordered speech recognition, including vocal tract length perturbation (VTLP), tempo perturbation and speed perturbation. Both normal and disordered speech were exploited in the augmentation process. Variability among impaired speakers in both the original and augmented data was modeled using learning hidden unit contributions (LHUC) based speaker adaptive training. The final speaker adapted system constructed using the UASpeech corpus and the best augmentation approach based on speed perturbation produced up to 2.92% absolute (9.3% relative) word error rate (WER) reduction over the baseline system without data augmentation, and gave an overall WER of 26.37% on the test set containing 16 dysarthric speakers.
Automatic recognition of overlapped speech remains a highly challenging task to date. Motivated by the bimodal nature of human speech perception, this paper investigates the use of audio-visual technologies for overlapped speech recognition. Three issues associated with the construction of audio-visual speech recognition (AVSR) systems are addressed. First, the basic architecture designs i.e. end-to-end and hybrid of AVSR systems are investigated. Second, purposefully designed modality fusion gates are used to robustly integrate the audio and visual features. Third, in contrast to a traditional pipelined architecture containing explicit speech separation and recognition components, a streamlined and integrated AVSR system optimized consistently using the lattice-free MMI (LF-MMI) discriminative criterion is also proposed. The proposed LF-MMI time-delay neural network (TDNN) system establishes the state-of-the-art for the LRS2 dataset. Experiments on overlapped speech simulated from the LRS2 dataset suggest the proposed AVSR system outperformed the audio only baseline LF-MMI DNN system by up to 29.98% absolute in word error rate (WER) reduction, and produced recognition performance comparable to a more complex pipelined system. Consistent performance improvements of 4.89% absolute in WER reduction over the baseline AVSR system using feature fusion are also obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.