In Agriculture, leaf diseases have grown to be a dilemma as it can cause significant diminution in both quality and quantity of agricultural yields. Thus, automated recognition of diseases on leaves plays a crucial role in agriculture sector. This paper imparts a simple and computationally proficient method used for leaf disease identification and grading using digital image processing and machine vision technology.The proposed system is divided into two phases, in first phase the plant is recognized on the basis of the features of leaf, it includes pre-processing of leaf images, and feature extraction followed by Artificial Neural Network based training and classification for recognition of leaf. In second phase the disease present in the leaf is classified, this process includes K-Means based segmentation of defected area, feature extraction of defected portion and the ANN based classification of disease. Then the disease grading is done on the basis of the amount of disease present in the leaf.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.