Over the past decade, the rise of cancer immunotherapy has coincided with a remarkable breakthrough in cancer therapy, which attracted increased interests in public. The scientific community clearly showed that the emergence of immunotherapy is an inevitable outcome of a holistic approach for cancer treatment. It is well established that traditional Chinese medicine (TCM) utilizes the principle of homeostasis and balance to adjust the healthy status of body. TCM treatment toward cancer has a long history, and the diagnosis and treatment of tumors were discussed in the ancient and classical literatures of Chinese medicine, such as the Yellow Emperor’s Inner Canon. Precious heritage has laid the foundation for the innovation and development of cancer treatment with TCM. The modern study indicated that TCM facilitates the treatment of cancer and enhances the survival rate and life expectancy of patients. However, the pharmacological mechanisms underlying these effects are not yet completely understood. In addition, physicians cannot always explain why the TCM treatment is effective and the mechanism of action cannot be explained in scientific terms. Here, we attempted to provide insights into the development of TCM in the treatment and interpret how TCM practitioners treat cancer through six general principles of TCM by using modern scientific language and terms based on newly discovered evidence.
The objective was to investigate the effect of activin A on matrix metalloproteinase 3 (MMP-3) production and to identify the role of activin A in chondroprotection. SW1353 cells, a human chondrosarcoma cell line, were stimulated with interleukin (IL) 1alpha and tumor necrosis factor (TNF) alpha, and the concentrations of activin A, follistatin, and MMP-3 secreted into the culture media were measured by enzyme-linked immunosorbent assay (ELISA). Activin A was added to cell cultures in the presence of IL-1alpha or TNFalpha to determine its effect on the production of MMP-3 and sulfated glycosaminoglycan (sGAG) (measured by Alcian blue assay). To study the mechanism responsible for the chondroprotective effects of activin A, the production of IL-1 receptor antagonist (IL-1ra) and tissue inhibitor for metalloproteinases 1 (TIMP-1) was examined by ELISA. Addition of IL-1alpha did not affect the production of activin A by cultured SW1353 cells. IL-1alpha and activin A inhibited the production of follistatin. Stimulation of SW1353 cells with activin A suppressed IL-1alpha-induced, but not TNFalpha-induced, MMP-3 expression. Activin A had no effect on the production of sGAG, IL-1ra, or TIMP-1, although it suppressed the induction of TIMP-1 and IL-1ra by IL-1alpha. This novel finding of MMP-3 inhibition by activin A suggests a new role of activin A in cartilage remodeling. Activin A may have therapeutic potential for preventing cartilage degradation.
SUMMARYThe aim of this study was to construct and purify a novel interleukin-1 receptor antagonist (IL-1ra)-interleukin-10 (IL-10) fusion protein and determine its biological function and antiinflammatory effects. The isolated cDNAs of two inhibitory cytokines (IL-1ra, IL-10) were used to construct a cDNA for the IL-1ra-IL-10 fusion protein. The expressed recombinant cytokines and fusion product were purified and their biological properties analysed. The anti-IL-1 effect was evaluated by using a thymocyte-proliferation assay, and the IL-10 effect was investigated by the inhibition of interferon-c (IFN-c) production from splenocytes. The clinical response and histological analyses were studied in an adjuvant arthritic rat model. The fusion protein was 38 000 molecular weight in size. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting demonstrated that the purified protein was recognized by both IL-1ra and IL-10 antibodies. The fusion protein significantly inhibited IL-1-mediated thymocyte proliferation and concanavalin A (ConA)-primed IFN-c production from splenocytes. The fusion protein also suppressed joint swelling (paw circumference reduced from 5AE0 ± 0AE2 to 4AE1 ± 0AE1 cm; paw thickness » 2 mm in difference) and synovial inflammation in adjuvant arthritis of rats. Our investigations indicate that this fusion protein effectively suppresses inflammatory arthritis and may initiate a trend for future clinical application to target multiple molecules at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.